2020, Número 4
<< Anterior Siguiente >>
Rev Cubana Pediatr 2020; 92 (4)
Genómica de los trastornos del desarrollo neurológico
Méndez RLA, Lantigua CA, Zelenova M, Vorsanova S, Iourov I
Idioma: Ingles.
Referencias bibliográficas: 46
Paginas: 1-13
Archivo PDF: 478.82 Kb.
RESUMEN
Introducción:
Los trastornos del neurodesarrollo están caracterizados por retardo en la adquisición de las funciones motoras, habilidades cognitivas para el habla o el déficit combinado en estas áreas; se presenta en niños menores de 5 años de edad. Las causas genéticas están implicadas en más de la mitad de los pacientes con estos trastornos.
Objetivo:
Examinar las alteraciones del genoma implicados en los trastornos del neurodesarrollo y algunos aspectos de su asesoramiento genético.
Métodos:
Búsqueda bibliográfica en Medline, Pubmed, Scielo, LILACS y Cochrane con énfasis en los últimos cinco años, acerca de la relación entre los variados factores genéticos que pueden estar involucrados en los trastornos del neurodesarrollo.
Resultados:
Los factores genéticos involucrados pueden ser groseros como las aneuploidías cromosómicas hasta los más sutiles como las variaciones en el número de copias en el genoma. Se describen los síndromes de microdeleción-micro duplicación como una causa relativamente frecuente de los trastornos del neurodesarrollo y se explican sus probables mecanismos de formación. Se relacionan las aneuploidías cromosómicas y las variaciones en el número de copia como causas de estos trastornos.
Consideraciones finales:
Las aberraciones genéticas se encuentran en 30-50 % de los niños con trastornos del neurodesarrollo. El cariotipo convencional permite la detección de aberraciones cromosómicas que abarcan más de 5-7 Mb, lo que representa 5-10 % de los reordenamientos genómicos causales en estos trastornos. El cariotipo molecular (por ejemplo, una matriz de SNP/ CGH de matriz) puede mejorar significativamente la certeza del diagnóstico en pacientes con trastornos del neurodesarrollo y malformaciones congénitas.
REFERENCIAS (EN ESTE ARTÍCULO)
Patel DR, Merrick J. Neurodevelopmental and neurobehavioral disorders. Transl Pediatr. 2020;9 (1):S1-S2
Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genom. 2010;11(6):440-6.
Patel DR, Merrick J. Neurodevelopmental disabilities: Introduction and epidemiology. In: Patel D, Greydanus D, Omar H,Merrick J, editors. Neurodevelopmental Disabilities. Dordrecht: Springer; 2011.
Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genom. 2012;13(6):477-88.
Guo H, Bttella E, Marcogliese PC, Zhao R, Andrews JC, Nowakowski TJ, et al. Disruptive mutation in TANC2 define a neurodevelopmental syndrome associate with psychiatric disorders. Nat Commun. 2019;10(1):4679.
Naseer MI, Chaudhary AG, Rasool M, Kalamegan G, Ashgan FT, Assidi M, et al. Copy number variations in Saudi family with intellectual disability and epilepsia. BMC Genomics. 2016;17:757.
Weise A, Mrasek K, Klein E, Mulatinho M, Llerena JrJC, Hardekopf D, et al. Microdeletion and microduplication syndromes. J Histoch Cytochem. 2012;60(5):346-58.
Gu W, Zhang F, Lupski JR. Mechanisms for human genomic Rearrangements. Pathogenet. 2008;1(1): 4.
Gardner RM, Amor DJ. Part Two: Parent or child with a chromosomal abnormality. Chromosome Abnormalities and Genetic Counseling. Fifth edition. Oxford, New York: Oxford University Press; 2018.
Méndez-Rosado LA, García D, Molina-Gamboa O, García A, de León N, Lantigua-Cruz A, et al. Algorithm for the diagnosis of patients with neurodevelopmental disorders and suspicion of a genetic syndrome. Arch Argent Pediatr. 2020;118(1):47-60.
Lieber MR. The mechanism of human non homologous DNA end joining. J Biol Chem. 2008;283(1):1-5.
Méndez-Rosado LA, Hechavarría-Estenoz D, de la Torre ME, Pimentel-Benitez H, Hernández-Gil J, Perez B, et al. Current status of prenatal diagnosis in Cuba: causes of low prevalence of Down syndrome. Prenatal Diagnosis. 2014;34:6.
Hernández G, González N, Méndez Rosado LA. Genetic and non-genetic risk factors in pregnant women with prenatal diagnosis. Mayabeque. 2010-2012. The Cuban J. Communit Genet. 2015;(3):23-7.
Iourov IY, Vorsanova SG, Yurov YB. Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Internat Rev Cytol. 2006;249:143-91.
Wang JCC. Autosomal aneuploidy. In: Gersen SL, Keagle MB, ediors. The Principles of Clinical Cytogenetics (2nd ed.). Totowa (NJ): Humana Press; 2005. p. 133-14.
Liehr T. Benign and Pathological Chromosomal Imbalances: Microscopic and Submicroscopic Copy Number Variations (CNVs) in Genetics and Counseling. San Diego, CA: Academic Press of Elsevie; 2014.
Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, et al. Fine-scale structural variation of the human genome. Nat Genet. 2005;37(7):727.
Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Research. 2013; 139(3):181-8.
Vorsanova SG, Yurov YB, Iourov IY. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Curr Bioinformat. 2017;12(1):19-26.
Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221-37.
Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987;4:203-21.
Liu P, Carvalho CM, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012;22:211-20.
Arlt MF, Wilson TE, Glover TW. Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev. 2012;22:204-10.
Liehr T, Schreyer I, Kuechler A, Manolakos E, Singer S, Dufke A, et al. Parental origin of deletions and duplications-about the necessity to check for cryptic inversions. Mol Cytogenet. 2018;11(1):20-7.
Koolen DA, Pfundt R, Linda K, Beunders G, Veenstra-Knol HE, Conta JH, et al. The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSsl1 sequence variant. Eur J Hum Genet. 2016;24 (5):652-9.
Natacci F, Alfei E, Tarara LD, Arrigo S, Zuffardi O, Gentilin B, et al. Chromosome 17q21.31 duplication syndrome: description of a new familiar case and further delination of the clinical spectrum. Eur J Paediatr Neurol. 2016;20(1):183-7.
Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet. 2006;38(9):1038-42.
Ballif BC, Theisen A, Rosenfeld JA, Traylor RN, Gastier-Foster J, Thrush DL, et al. Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. Am J Hum Genet. 2010; 86(3):454-61.
Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, et al. Recurrent HERV-Hmediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34(10):1415-1423
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Silvanovich AP, Yurov YB. Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies. Mol Cytogenet. 2012;5(1):46.
Depienne C, Nava C, Keren B, Heide S, Rastetter A, Passemard S, et al. Genetic and Phenotype dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associate with mutation in ZBTB18 and HNRNPU. Human Genet. 2017;136(4):463-79.
Shaffer LG, Theisen A, Bejjani BA, Ballif BC, Aylsworth AS, Lim C, et al. The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet Med. 2007;9(9):607-16.
Lefroy H, Fox O, Javaid MK, Makaya T, Shears DJ. 1q24 deletion syndrome. Two cases and new insights into genotype-phenotype correlations. Am J Med Genet A. 2018;176 (9):2004-8.
Rosenfeld JA, Patel A. Chromosomal microarrays: understanding genetics of neurodevelopmental disorders and congenital anomalies. J Pediat Genetics. 2017;6(01):42-50.
Kirov G, Rees E, Walters JT. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75(5):378-85.
Catusi I, Recalcati MP, Bestetti I, Garzo M, Valtorta C, Alfonsi M, et al. Testing single-combined clinical categories on 5110 italian patients with developmental phenotypes to improve array-based detection rate. Mol Genet Genom Med. 2020;8:1056.
Polyak A, Rosenfeld JA, Girirajan S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015;7(1):94.
Luo T, Chen HY, Zou X, Wang T, Cheng YM, Wang HF, et al. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum Rep. 2019;34(3):414-23.
Takumi T, Tamada K. CNV biology in neurodevelopmental disordes. Curr Opin Neurobiol. 2018;48:183-192.
Männik K, Mägi R, Macé A, Cole B, Guyatt AL, Shihab HA, et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA. 2015;313(20):2044-54.
Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet. 2014;7(1):98.
Iourov IY, Vorsanova SG, Voinova VY, Kurinnaia OS, Zelenova MA, Demidova IA, et al. Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol Cytogenet. 2013;27:6(1):53.
Vorsanova SG, Iurov IY, Voinova VY, Kurinnaia OS, Zelenova MA, Demidova IA, et al. Subchromosomal microdeletion identified by molecular karyotyping using DNA microarrays (array CGH) in Rett syndrome girls negative for MECP2 gene mutations. Zh Nevrol Psikhiatr Im SS Korsakova. 2013;113(10):63-8.
Pizzo l, Jensen M, Poliak A, Rosenfeld JA, Mannik K, Krishnan A, et al. Rare variant in the genetic background modulate cognitive and developmental phenotypes in individuals carring disease- associated variants. Gene Med. 2019;21:816-25.
Moreno-De-Luca A, Evans DW, Boomer KB, Hanson E, Vernier R, Goin-Kochel RP, et al. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry. 2015;72(2):119-26.
Ho KS, Twede H, Vanzo R, Harward E, Hensel CH, Martin MM, et al. Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders. Biomed Res Int. 2016;2016:3284534.