2020, Número 2
<< Anterior Siguiente >>
Revista Cubana de Ortopedia y Traumatología 2020; 34 (2)
Anatomía articular y parámetros radiográficos de la cadera como factor de riesgo de fractura: una mirada actualizada
Bahr US, Ponce de León NR, Guisado ZK, Melis SJA
Idioma: Español
Referencias bibliográficas: 45
Paginas: 1-29
Archivo PDF: 409.14 Kb.
RESUMEN
Introducción:
Existe un aumento de la evidencia de que la estructura geométrica de la anatomía de la cadera juega un importante papel en la etiología de la fractura.
Objetivo:
Sistematizar los conocimientos más actuales referentes a las características anatómicas de los parámetros radiográficos de la articulación de la cadera, y su relación con la fractura.
Métodos:
Se realizó una investigación documental, con los artículos científicos publicados en las bases de datos médicas informáticas como PubMed, Ebsco y SciELo en los últimos 5 años.
Resultados:
La mayoría de las publicaciones analizan el ángulo cervicodiafisario y el eje de la cadera. Otras medidas analizadas son el eje femoral, la longitud y el ancho del cuello femoral, así como medidas acetabulares. No existe un consenso en la medida del largo del cuello femoral o del eje femoral, a pesar de ser un componente importante de la estructura. El conocimiento de las particularidades de la anatomía y de las características biomecánicas de la cadera permite establecer una base para la comprensión de los factores que afectan esta articulación.
Conclusiones:
Los estudios que se han realizado sobre las características de los componentes estructurales, demuestran que existe una asociación entre sus dimensiones y la ocurrencia de fractura de cadera, en algunos casos independientes de la densidad mineral ósea.
REFERENCIAS (EN ESTE ARTÍCULO)
Gómez Sarduy A, Morales Piñeiro S, López Gonzáles M, Mata Cuevas R. Acciones educativas para prevenir fracturas de cadera por caídas. Rev Cubana Ortop Traumatol. 2018;31(2). Disponible en: http://www.revortopedia.sld.cu/index.php/revortopedia/article/view/98
Yang QH, Chen YX, Gao YS. Geographic Variations in Intertrochanteric Femoral Fractures in China. Biomed Res Int. 2019;8396723 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854944
Rego JJ, Hernández CA, Andreu AM, Lima ML, Torres ML, Vázquez M. Factores asociados a la fractura de cadera en el hospital clinicoquirúrgico "Dr. Salvador Allende". Rev Cubana Salud Pública. Jun 2017;43(2):149-65. Disponible en: http://scieloprueba.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662017000200003&lng=es
Bahr Ulloa S, Pérez Triana E, Jordán Padrón M, Pelayo Vázquez S. Comportamiento de la fractura de cadera en Cuba y su relación con la anatomía articular como factor de riesgo. Correo Cientif Med. 2020;24(1). Disponible en: http://revcocmed.sld.cu/index.php/cocmed/article/view/3382
Villette CC, Zhang J, Phillips ATM. Influence of femoral external shape on internal architecture and fracture risk. Biomechanics and Modeling in Mechanobiology. 2020;19:1251-61. DOI: http://10.1007/s10237-019-01233-2
Grygorieva NV, Povoroznyuk VV, Povoroznjuk VV, Zubach OB. Proximal Femoral Geometry and the Risk of Fractures: Literature Review. Pain Joints Spine. 2018;7(4):152-65. DOI: http://10.22141/2224-1507.7.4.2017.121226
Katchy AU, Njeze NR, Ezeofor S, Nnamani K. Geometrical Analysis of the Proximal Femur and the Clinical Application in Total Hip Replacement: A Study of the Igbo Population of South East Nigeria. Niger J Clin Pract. 2019;22(12):1728-36. DOI: http://10.4103/njcp.njcp_634_18
Leslie W, Lix L, Morin S, Kanis J. Hip Axis Length is a FRAX and Bone Density Independent Risk Factor for Hip Fracture in Women. Journal of Clinical Endocrinology & Metabolism. March 2015;100(5):jc20144390. Disponible en: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/jcem/100/5/10.1210_jc.2014-4390/4/jcem2063.pdf?
Imren Y, Sofu H, Dedeoglu SS, Desteli EE. Predictive value of different radiographic parameters evaluating the proximal femoral geometry for hip fracture in the elderly: what is the role of the true moment arm? Archives of Medical Science-Civilization Diseases. June 2016 1;(1):58-62. DOI: http://10.5114/amscd.2016.60904
Rouviere H, Delmas A. Anatomía humana, descriptiva, topográfica y funcional. 11na. ed. París, Francia: Editorial Masson; 2005.
Yang X-J, Sang H-X, Bai B, Ma X-Y, Xu C, Lei W, et al. Ex Vivo Evaluation of Hip Fracture Risk by Proximal Femur Geometry and Bone Mineral Density in Elderly Chinese Women. Medical science monitor?: international medical journal of experimental and clinical research [Internet]. 18 Oct 2018 [cited 15 Sep 2020 ];24:7438-43. Disponible en: Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=mdc&AN=30334549&lang=es&site=ehost-live
Geoffrey KC, Jeffers JR, Beaulé PE. Hip Joint Capsular Anatomy, Mechanics, and Surgical Management. J Bone Joint Surg Am. 4 Dec 2019;101(23):2141-51. DOI: http://10.2106/JBJS.19.00346 PMCID: PMC7406151 PMID: 31800428
Li M, Lv HC, Liu JH, Cui X, Sun GF, Hu JW, et al. Differences in Bone Mineral Density and Hip Geometry in Trochanteric and Cervical Hip Fractures in Elderly Chinese Patients. Orthopaedic Surgery 2019;11(2):263-9. DOI: http://10.1111/os.12456
Han J, Hahn MH. Proximal Femoral Geometry as Fracture Risk Factor in Female Patients with Osteoporotic Hip Fracture. J Bone Metab 2016;23:175-82. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018611/pdf/jbm-23-175.pdf
Ha YC, Yoo JI, Yoo J, Park KS. Effects of Hip Structure Analysis Variables on Hip Fracture: A Propensity Score Matching Study. J. Clin. Med. 2019;8:1507; DOI: http://10.3390/jcm8101507 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833009/pdf/jcm-08-01507.pdf
Gardner SS, Dong D, Peterson LE, Park KJ, Harris JD. Is there a relationship between femoral neck-shaft angle and ischiofemoral impingement in patients with hip pain? Journal of Hip Preservation Surgery 2020;7(1):43-8. DOI: http://10.1093/jhps/hnaa006 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195935/pdf/hnaa006.pdf
Shapira J, Chen JW, Bheem R, Lall AC, Rosinsky PJ, Maldonado DR, et al. Radiographic factors associated with hip osteoarthritis: a systematic review. Journal of Hip Preservation Surgery 2020;7(1):4-13. DOI: http://10.1093/jhps/hnz073 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195936/pdf/hnz073.pdf
Kazemi SM, Qoreishy M, Keipourfard A, Minator Sajjadi M, Shokraneh S. Effects of Hip Geometry on Fracture Patterns of Proximal Femur. Arch Bone Jt Surg. Jun 2016;4(3):248-52. PMCID: PMC4969372 PMID: 27517071. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969372/
Maeda Y, Sugano N, Saito M, Yonenobu K. Comparison of Femoral Morphology and Bone Mineral Density between Femoral Neck Fractures and Trochanteric Fractures. Clinical Orthopaedics and Related Research. 2011;469(3):884-9. DOI: http://10.1007/s11999-010-1529-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032853/pdf/11999_2010_Article_1529.pdf
Pérez Triana E, Bahr Ulloa S, Jordán Padrón M, Martí Coruña MC, Reguera Rodríguez R. Bases anatomofuncionales de la articulación de la cadera y su relación con la fractura. Rev Méd Electrón[Internet]. May-Jun 2018;40(3). Disponible en: http://scielo.sld.cu/pdf/rme/v40n3/rme170318.pdf
Fischer CS, Kühn JP, Völzke H, Ittermann T, Gümbel D, Kasch R, et al. The neck-shaft angle: an update on reference values and associated factors. Acta Orthop. 2020;91(1):53-7. doi: http://10.1080/17453674.2019.1690873 PMCID: PMC7006743 PMID: 31735107 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006743
Chalupa RL, Rivera JC, Tennent DJ, Johnson AE. Correlation Between Femoral Neck Shaft Angle and Surgical Management in Trainees With Femoral Neck Stress Fractures. US Army Medical Department Journal. Jan 2016 1-5. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=113185423&lang=es&site=ehost-live
Gnudi S, Ripamonti C, Gualtieri G, Malavolta N. Geometry of proximal femur in the prediction of hip fracture in osteoporotic woman. Br J Radiol. 1999; 72:729-33. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10624337
Gebre RK, Hirvasniemi J, Lantto I, Saarakkala S, Leppilahti J, Jämsä T. Structural risk factors for low-energy acetabular fractures. Bone. 2019;127:334-42. DOI: http://10.1016/j.bone.2019.07.004 https://pubmed.ncbi.nlm.nih.gov/31283995
Gnudi S, Sitta E, Pignotti E. Prediction of incident hip fracture by femoral neck bone mineral density and neck-shaft angle: a 5-year longitudinal study in post-menopausal females. British Journal of Radiology. 2012;85:467-73 DOI: http://10.1259/bjr/57130600. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587077/
Boese C, Jostmeier J, Oppermann J, Dargel J, Chang D, Boese C, et al. The neck shaft angle: CT reference values of 800 adult hips. Skeletal Radiology. Apr 2016;45(4):455-63. DOI: http://10.1007/s00256-015-2314-2 Disponible en: http://web.b.ebscohost.com/ehost/detail/detail?sid=2d0f3659
Soares de Farias TH, Quadros Borges V, Soares de Souza E, Miki N, Abdala F. Radiographic study on the anatomical characteristics of the proximal femur in Brazilian adults. Rev bras ortop. Jan-Feb 2015;50(1). DOI: http://10.1016/j.rboe.2015.02.001
Kim K, Brown J, Kim K, Choi H, Kim H, Lim S, et al. Differences in femoral neck geometry associated with age and ethnicity. Osteoporosis International. July 2011;22(7):2165-74. Disponible en: http://web.b.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=eb8be7eb-a469-4545-9bc7-9242e94ff53d%40sessionmgr107&vid=1&hid=116
Janjua SN, Habib K, Kirn S, Fatima S, Nasir E. A Study of Femoral Neck Shaft Angle in Adults of Islamabad and its Clinical Implications. Pakistan Journal of Medical Research Jan 2020;59(1):32-6. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=144607386&lang=es&site=ehost-live
Fajar JK, Taufan T, Yarif M, Azharuddinc A. Hip geometry and femoral neck fractures: A meta-analysis. Journal of Orthopaedic Translation. April 2018;13:(1-6). DOI: http://10.1016/j.jot.2017.12.002 Disponible en: https://www.sciencedirect.com/science/article/pii/S2214031X17300372
Sultan SI, Joshi VS, Diwan CV. Proximal femoral geometry and its clinical relevance in Indians - A radiological study. Indian Journal of Clinical Anatomy and Physiology. Jan-Mar 2018;5(1):107-11. DOI: http://10.18231/2394-2126.2018.0024
Nayak L, Senapati S, Panda SK, Chinara PK. Morphometric study of proximal femur in fractured and non-fractured post menopausal women. Asian J Pharm Clin Res. April 2017;10(4):313-6. DOI: http://10.22159/ajpcr.2017.v10i4.16761
Ripamonti C, Lisi L, Avella M. Femoral neck shaft angle width is associated with hip-fracture risk in males but not independently of femoral neck bone density. British Journal Radiol 2014;87:20130358. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075525/pdf/bjr.20130358.pdf
Hu ZS, Liu XL, Zhang YZ. Comparison of Proximal Femoral Geometry and Risk Factors between Femoral Neck Fractures and Femoral Intertrochanteric Fractures in an Elderly Chinese Population. Chin Med J (Engl). November 2018;131(21):2524-30. DOI: http://10.4103/0366-6999.244118 PMCID: PMC6213826 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213826
Beutel BG, Girdler SJ, Collins JA, Otsuka NY, Chu A. Characterization of proximal femoral anatomy in the skeletally-immature patient. J Child Orthop. 2018;12:167-72. DOI http://10.1302/1863-2548.12.180011 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902751/pdf/jco-12-167.pdf
Wang J, Chen W, Hou ZY, Lyu HZ, Zhu YB, Zhang YZ. Law of dynamic deformation of bone. Chinese Medical Journal. 2019;132(21). DOI: http://10.1097/CM9.0000000000000483 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6846251/pdf/cm9-132-2636.pdf
Leslie WD, Lix LM, Morin SN, Johansson H, Odén A, McCloskey EV, et al. Adjusting Hip Fracture Probability in Men and Women Using Hip Axis Length: the Manitoba Bone Density Database. J Clin Densitom. Jul-Sep 2016;19(3):326-31. PMID:26257267. DOI: http://10.1016/j.jocd.2015.07.004. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26257267
Lee DH, Jung KY, Hong AR, Kim JH, Kim KM. Femoral geometry, bone mineral density, and the risk of hip fracture in premenopausal women: a case control study. Bio Med Central Musculoskeletal Disorders. 2016;17:42. DOI: http://10.1186/s12891-016-0893-2
Fajar JK, Rusydi R, Rahman S, Alam SIN, Azharuddin A. Hip geometry to predict femoral neck fracture: only neck width has significant association. Apollo Med. 2016;13(4):213-9. DOI: http://10.1016/j.apme.2016.05.005 https://www.sciencedirect.com/science/article/pii/S0976001616300369
Santos RE, Fontes E, Vilela A, Nascimento LE, Barbosa PR, Belloti JC. Radiographic anatomy of the proximal femur: correlation with the occurrence of fractures. Acta Ortopedica Brasileira. 2012;20(2):79-83. DOI: http://10.1590/S1413-78522012000200004. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718425/pdf/aob-20-079.pdf
Caiaffo V, Albuquerque PPF, Albuquerque PV, Oliveira BDR. Sexual diagnosis through morphometric evaluation of the proximal femur. Int J Morphol. 2019;37(2):391-6.
Lima ALCLA, Miranda SC, Vasconcelos HFO. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture. Rev Bras Ortop. 18 Oct 2017;52(6):651-7. DOI: http://10.1016/j.rboe.2017.10.007
Bahr Ulloa S, Pérez Triana E, Ponce de León Narváez R. Asociación entre parámetros radiográficos de la geometría de la cadera y presencia de fractura. Convención Internacional de Salud, Cuba Salud 2018. Disponible en: http://www.convencionsalud2018.sld.cu/index.php/connvencionsalud/2018/paper/view/512/359
Nguyen T. Measuring geometric parameters of proximal femur by using reverse engineering. MM Science Journal. March 2019;(01):2761-6. DOI: http://10.17973/MMSJ.2019_03_2018111
Estrada Cingualbres RA, Ramos Botello YM, Bosch Cabrera JA. Estudio biomecánico hueso-implante DHS y fijador externo en la consolidación de la fractura de cadera. Rev Cubana Ortop Traumatol. 2014;28(1). Disponible en: http://www.revortopedia.sld.cu/index.php/revortopedia/article/view/30/14