2020, Número 4
<< Anterior Siguiente >>
Rev Cub Oftal 2020; 33 (4)
Tomografía de coherencia óptica macular en el diagnóstico y seguimiento del glaucoma
Arzuaga HE, Piloto DI, Fumero GFY, Domínguez RM, Batista PM
Idioma: Español
Referencias bibliográficas: 31
Paginas: 1-19
Archivo PDF: 562.27 Kb.
RESUMEN
El glaucoma es una neuropatía óptica caracterizada por la pérdida de células ganglionares
de la retina y sus axones. Constituye la primera causa de ceguera irreversible a nivel
mundial; por lo tanto, la detección oportuna y el monitoreo continuo es de vital
importancia. El grosor de la capa de la fibra nerviosa retiniana circumpapilar, medido
mediante tomografía de coherencia óptica, es la principal estrategia de evaluación
estructural utilizada en el diagnóstico del glaucoma. Sin embargo, considerando que la
mácula es el área retiniana relacionada con la visión central y contiene el 50 % de las
células ganglionares de la retina, medir el grosor macular parece ser una buena opción
para detectar precozmente la muerte de estas células. En esta revisión exponemos los
antecedentes, la justificación anatómica, los protocolos y los principales artefactos de la
tomografía de coherencia óptica macular en la atención del glaucoma. Además, ofrecemos un enfoque actualizado sobre cómo usar estas exploraciones en la práctica
clínica.
REFERENCIAS (EN ESTE ARTÍCULO)
Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107(5):453-64.
Medeiros FA, Zangwill LM, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma using optical coherence tomography. Am J Ophthalmol.2005;139(1):44-55.
Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fiber layer and visual function loss in glaucoma: the tipping point. Br J Ophthalmol. 2012;96(1):47-52.
Khanal S, Davey PG, Racette L, Thapa M. Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography. Clin Exp Optom. 2016;99(4):373-81.
Hammel N, Belghith A, Weinreb RN, et al. Comparing the rates of retinal nerve fiber layer and ganglion cell-inner plexiform layer loss in healthy eyes and in glaucoma eyes. Am J Ophthalmol. 2017;178:38-50.
Xu X, Xiao H, Guo X, Chen X, Hao L, Luo J, et al. Diagnostic ability of macular ganglion cell–inner plexiform layer thickness in glaucoma suspects. Medicine (Baltimore). 2017;96(51): e9182.
Nakanishi H, Akagi T, Hangai M, Kimura Y, Suda K, Kumagai KK, et al. Sensitivity and specificity for detecting early glaucoma in eyes with high myopia from normative database of macular ganglion cell complex thickness obtained from normal nonmyopic or highly myopic Asian eyes. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1143-52.
Kim KE, Jeoung JW, Park KH, Kim DM, Kim SH. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of falsepositives from glaucoma. Ophthalmology. 2015;122:502-10.
Shin JW, Sung KR, Lee GC, et al. Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma. Ophthalmology. 2017;124(10):1466-74.
Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5-25.
Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105(2):224-31.
Hood DC. Improving our understanding and detection of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017;57:46-75.
Hood DC, Raza AS, de Moraes CGV, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1-21.
Hood DC, Slobodnick A, Raza AS, et al. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci. 2014;55(2):632-49.
Hood DC, Raza AS, De Moraes CGV, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(2):940-6.
Zangwill LM, Khachatryan N, Bowd C, Liebmann JM, Girkin CA, Weinreb RN, et al. African Descent and Glaucoma Evaluation Study (ADAGES): Racial differences in the risk of developing visual field damage vary by level of IOP. IOVS. 2015;56(5):3701.
Hood DC. Macular Damage: The Diagnostic Missing Link. Rev Ophthalmol. 2013 [acceso: 03/12/2020];9. Disponible en: https://www.reviewofophthalmology.com/article/macular-damage-the--diagnosticmissing- link
Schiefer U, Papageorgiou E, Sample PA, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51(11):5685-9.
Heidelberg Engineering. Posicionamiento de la BMO e interpretación OCT en glaucoma. Módulo Glaucoma Premium Edition; 2016 [acceso: 03/12/2020]. Disponible en: https://academy.heidelbergengineering.com/course/view.php?id
Muñoz FJ, Koutsoulidis A, Triviño C, Rebolleda G, Cabarga C. Aplicaciones del análisis de la mácula con OCT en el Glaucoma. En: Muñoz FJ, Rebolleda G, Díaz M. Tomografía de Coherencia Óptica. Madrid: Sociedad Española de Oftalmología; 2011.p. 661-6.
Gupta D, Asrani S. Macular thickness analysis for glaucoma diagnosis and management. Taiwan J Ophthalmol. 2016;6(1):3-7.
Edlinger FSM, Schrems-Hoesl LM, Mardin CY, Laemmer R, Kruse FE, Schrems WA. Structural changes of macular inner retinal layers in early normal-tension and hightension glaucoma by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1245-56.
Pazos M, Dyrda AA, Biarnés M, Gómez A, Martín C, et al. Diagnostic accuracy of Spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology. 2017;124(8):1218-28.
Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005;139(3):509-17.
Lavinsky F, Wu MF, Schuman JS, Lucy KA, Liu ML, Song Y, Fallon J, Ramos Cadena M, Ishikawa H, Wollstein G. Can macula and optic nerve head parameters detect glaucoma progression in eyes with advanced circumpapillary retinal nerve fiber layer damage?. Ophthalmology. 2018;125(12):1907-12.
Bowd C, Zangwill LM, Weinreb RN, et al. Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. Am J Ophthalmol. 2017;175:37-44.
Sung KR, Sun JH, Na JH, et al. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119(2):308-13.
Belghith A, Medeiros FA, Bowd C, et al. Structural Change Can Be Detected in Advanced-Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016;57(9):511–8.
Leung CK, Ye C, Weinreb RN, Yu M, Lai G, Lam DS. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology. 2013;120(12):2485-92.
Asrani S, Essaid L, Alder BD, Santiago-Turla C. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014;132(4):396-402.
Cho JW, Sung KR, Lee S, Yun SC, Kang SY, Choi J, Na JH, Lee Y, Kook MS. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(12):6401-7.