2003, Número 4
<< Anterior Siguiente >>
Bioquimia 2003; 28 (4)
Inmunología
Fagocitosis: mecanismos y consecuencias. Primera parte
Rojas-Espinosa O, Arce-Paredes P
Idioma: Español
Referencias bibliográficas: 63
Paginas: 19-30
Archivo PDF: 1233.73 Kb.
RESUMEN
Ellie Metchnikoff, en 1880, descubrió que la función de las células fagocíticas era esencial para la supervivencia de todas las especies del reino animal. En los organismos unicelulares como los protozoarios, la función fagocítica es el único medio por el cual estos organismos adquieren su alimento. La función fagocítica de estas células se mejora a lo largo de la evolución y se mantiene en los animales más evolucionados, aunque aquí la función de los fagocitos deja de ser preponderantemente nutricional para constituirse en un eficiente mecanismo de protección no específico contra agentes infecciosos y de eliminación de células muertas o seniles. Cada etapa del proceso fagocítico (la migración, el reconocimiento de lo que puede y debe ingerirse, la endocitosis y la destrucción de partículas) se descubre cada vez más complicada; día a día se identifican más componentes moleculares y se establecen más interacciones y rutas metabólicas. Aunque el proceso de la fagocitosis no está esclarecido en su totalidad, ahora tenemos una mejor idea de cómo se reconocen las partículas que deben eliminarse y de los mecanismos subsecuentes que llevan a su destrucción. En este artículo, se hace una revisión concisa del proceso de la fagocitosis y se enfatiza su importancia como mecanismo de protección en los vertebrados, señalando, aunque de manera somera, aquellos aspectos que en la actualidad son objeto de mayor estudio, incluyendo estructura celular, la existencia y función de las proteínas de adhesión, los receptores para endocitosis, las proteínas G, las cascadas de señalización, la maduración de los fagosomas, y la generación de los metabolitos tóxicos del oxígeno y el nitrógeno.
REFERENCIAS (EN ESTE ARTÍCULO)
Aderem A. Underhill DM. Mechanisms of phagocytosis inmacrophages. Annu Rev Immunol 1999; 170: 593-623.
Underhill DM, Ozinsky A. Phagocytosis of microbes:complexity in action. Annu Rev Immunol 2002; 20: 825-852.
Greenberg S, Grinstein S. Phagocytosis and innateimmunity. Curr Opin Immunol 2002; 14: 136-145.
Bainton DF, Ullot JL, Farquhar MG. The development ofneutrophilic polymorphonuclear leukocytes in human bonemarrow. J Exp Med 1971; 134: 907-939.
Dransfield I, Buckle AM, Savill JS, McDowall A, HaslettC, Hogg N. Neutrophil apoptosis is associated with areduction in CD16 (Fc gamma RIII) expression. J Immunol1994; 153: 1254-1263.
Gallin JI. Leukocyte adherence-related glycoproteins LFA-1, Mo-1, and p150,95: A new group of monoclonalantibodies, a new disease, and a possible opportunity tounderstand the molecular basis of leukocyte adherence. JInfect Dis 1985; 152: 661-664.
Etzioni A. Integrins: The glue of life. Lancet 1999; 353:341-343.8.Carlos TM, Harlan JM. Leukocyte-endothelial adhesionmolecules. Blood 1994; 84: 068-2101.
Frenette PS, Wagner DD. Adhesion molecules-Part II:blood vessels and blood cells. N Engl J Med; 1996: 335:43-48.
Rosales C, Brown EJ. Neutrophil receptors and modulationof the immune response. En The Neutrophil, Ed por JSAbramson and JG Wheeler. London: Oxford UniversityPress; 1993.p. 23-62.
Hayward AR, Harvey BA, Leonard J, Greenwood MC,Wood CB, Soothill JF. Delayed separation of the umbilicalcord, widespread infections, and defective neutrophilmobility. Lancet 1979; 26: 1099-1001.
Abramson JS, Mills EL, Sawyer MK, Regelmann WR,Nelson JD, Quie PG. Recurrent infections and delayedseparation of the umbilical cord in an infant with abnormalphagocytic cell locomotion and oxidative response duringparticle phagocytosis. JPediatrics 1982; 99: 887-894.
Arnaout MA, Pitt J, Cohen HJ, Melamed J, Rosen FS,Colten HR. Deficiency of a granulocyte-membraneglycoprotein (gp150) in a boy with recurrent bacterialinfections. N Engl J Med 1982; 306: 693-699.
Crowley CA, Curnutte JT, Rosin RE, Schwartz J, Gallin JI,Klempner M, et al. An inherited abnormality of neutrophiladhesion. Its genetic transmission and its association witha missing protein. N Engl J Med 1980; 302: 1163-1168.
Kohl S, Springer TA, Schmalstieg FC, Loo LS, AndersonDC. Defective natural killer cytotoxicity andpolymorphonuclear leukocyte antibody-dependentcellular cytotoxicity in patients with LFA-1/OKM-1deficiency. J Immunol 1984; 133: 2972-2978.
Arnaout MA, Todd RF, Dana N, Melamed J, SchlossmanSF, Colten HR. Inhibition of phagocytosis of complementC3- or immunoglobulin-coated particles and of C3bibinding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mo1) J Clin Invest1983; 72: 171-179.
Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ,Rothlein R, Miller LJ, et al. The severe and moderatephenotypes of heritable Mac-1, LFA-1 deficiency: theirquantitative definition and relation to leukocytedysfunction and clinical features. J Infect Dis 1985; 152:668-689.
Patarroyo M, Beatty PG, Serhan CN, Gahmberg CG.Identification of a cell-surface glycoprotein mediatingadhesion in human granulocytes. Scand J Immunol 1985;22: 19-631.
Beller DI, Springer TA, Schreiber RD. Anti-Mac-1selectively inhibits the mouse and human type threecomplement receptor. J Exp Med 1982; 156: 1000-1009.
Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, LidaK, Talle MA, et al. Identification of the C3b1 receptor ofhuman monocytes and macrophages by using monoclonalantibodies. Proc Natl Acad Sci (USA) 1983; 80: 5699-5703.
Page RC, Sims TJ, Geissler F, Altman LC, Baab DA. Defectiveneutrophil and monocyte motility in patients with earlyonset periodontitis. Infect Immun 1985; 47: 169-175.
Van Dyke TE, Horoszewics HU, Cianciola LJ, Genco RJ.Neutrophil chemotaxis dysfunction in humanperiodontitis. Infect Immun 1980; 27: 124-132.
Frenette PS, Wagener DD. Adhesion molecules-Part I. NEngl J Med 1996; 335: 1526-1529.
Phillips ML, Schwartz BR, Etzioni A, Bayer R, Ochs HD,Paulson JC, et al. Neutrophil adhesion in leukocyteadhesion deficiency syndrome type 2. J Clin Invest 1995;96: 2898-2906.
Marquardt T, Brune T, Luhn K, Zimmer KP, Fabritz L,van der Werft N, et al. Leukocyte adhesion deficiency IIsyndrome, a generalized defect in fucose metabolism. JPediatr 1999; 134: 681-688.
Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E,Westweber D. Correction of leukocyte adhesion deficiencytype II with oral fucose. Blood 1999; 94: 3976-3985.
Linder ME, Gilman AG. G proteins. Sci Amer 1992; 267:36-43.
Lefkowitz RJ. Clinical implications of basic research. Gproteins in medicine. N Engl J Med 1995; 332: 186-187.
29.Birnbaumer L, Birnbaumer M. Signal transduction by Gproteins. J Recept Signal Transduct Res 1997; 15: 213-252.
Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC,Jesaitis AJ. Association of a ras-related protein withcytochrome b of human neutrophils. Nature 1989; 342:198-200.
Bokoch GM. Signal transduction by GTP binding proteinsduring leukocyte activation of phagocytic cells. Curr TopMembr Transp 1990; 35: 65-111.
Bokoch GM. Regulation of cell function by Rho familyGTPases. Immunol Res 2000; 21: 139-148.
Aderem A. The Marcks brothers: A family of proteinkinase C substrates. Cell 1992; 71: 713-716.
Rosen A, Keenan KF, Thelen M, Nairn AC, Aderem A.Activation of PKC results in the displacement of itsmyristoilated, alanin-rich substrate from punctuatestructures in macrophage filopodia. J Exp Med 1990; 172:1211-1215.
Kyat M, Anderson S, Allen LA, Aderem A. MARKSregulates membrane ruffling and cell spreading. Curr Biol1997; 7: 611-614.
Vicente-Manzanares M, Sancho D, Yañez-Mó, M, Sánchez-Madrid M. The leukocyte cytoskeleton in cell migrationand immune interactions. Internat Rev Cytol 2002; 216:233-289.
Olmsted JB, Borisy GG. Microtubules. Annu Rev Biochem1973; 42: 507-540.
Lazarides E. Weber K. Actin antibody: The specificvisualization of actin filaments in non-muscle cells. ProcNat Acad Sci 1974; 71: 2268-2272.
Weber K, Groeschel-Stewart U. Antibody to myosin: thespecific visualization ofmyosin-containing filaments innonmuscle cells. Proc Natl Acad Sci 1974; 71: 4561-4564.
Lazarides E. Tropomyosin antibody: the specificlocalization of tropomyosin in non-muscle cells. J CellBiol 1975; 65: 549-561.
Janmey PA. Mechanical properties of cytoskeletalpolymers. Curr Opin Cell Biol 1991; 3: 4-11.
Sarndahl E, Lindroth M, Bengtsson T, Farllman M,Gustavsso J, Stendahl O, et al. Association of ligand-re-ceptor complexes with actin filaments in humanneutrophils: A possible regulatory role for a G-protein. JCell Biol 1990; 109: 2791-2799.
Southwick FS, Young CL. The actin released from profilin-actin complexes is insufficient to account for the increasein F-actin in chemoattractant-stimulated polymorpho-nuclear leukocytes. J Cell Biol 1990; 110: 1965-1973.
Snyderman R. Regulatory mechanisms of a chemo-attractant receptor on human polymorphonuclearleukocytes. Rev Infect Dis 1985; 7: 390-394.
Saba TM. Aespecific opsonins. En: The human systemand infectious diseases. Karger,Basel 1975: pp489-504.
Kaplan G. Differences in the mode of phagocytosis withFc and C3 receptors in macrophages. Scand J Immunol1977; 6: 797-807.
Johnson E, Eskeland T. Complement C3b receptormediated phagocytosis of agarose beads by mousemacrophages. I. Intracellular degradation of agarose-boundC3bi and C3b by lysosomal enzymes. Scand J Immunol1983; 18: 193-200.
Johnson E, Gauperaa T, Eskeland T. Fibronectin binds tocomplement-coated agarose beads and increases theirassociation to mouse macrophages. Scand J Immunol1985; 22: 315-320.
Bevilacqua MP, Amrani D, Mosesson MW, Bianco C.Receptors for cold insoluble globulin (plasma fibronectin)on human monocytes. J Exp Med 1981; 153: 42-60.
Proctor RA. Fibronectin: an enhancer of phagocyticfunction. Rev Infect Dis 1987; 9: 412-419.
Wright SD, Silverstein S. Tumor promoting phorbol estersstimulate C3b and C3bi receptor-mediated phagocytosisin cultured human monocytes. J Exp Med 1982; 156:1149-1164.
Bianco C, Griffin FM, Silverstein SC. Studies of themacrophage complement receptor. Alterations of recep-tor function upon macrophage activation. J Exp Med 1975;141: 1278-1282.
Wright SD, Craigmyle LS, Silverstein SC. Fibronectin andserum amyloid P component stimulate C3b and C3bi-mediated phagocytosis in cultured human monocytes. JExp Med 1983; 158: 1338-1343.
Griffin JA, Griffin FM. Augmentation of macrophagecomplement receptor function in vitro. I. Characterizationof the cellular interactions required for the generation ofa T-lymphocyte product that enhances macrophagecomplement receptor function. J Exp Med 1979; 150:653-675.
Tulkens P, Schneider YJ, Trouet A. The fate of the plas-ma membrane during endocytosis. Biochem Rev 1977; 5:1809-1815.
Medzhitov R. Janeway CH. Innate immunity. N Engl JMed 2000; 343: 338-344.
Ravetch JV. Fc receptors: rubor redux. Cell 1994; 78:553-560.
Ravetch JV. Fc receptors. Curr Opin Immunol 1997; 9:121-125.
Unkeless JC, Jin J. Inhibitory receptors, ITIM sequencesand phosphatases. Curr Opin Immunol 1997; 9: 338-343.
Reth M. Antigen receptor tail clue. Nature 1989; 338:383-384.
Strzelecka A, Kwiatkowska K, Sobota A. Tyrosinephosphoryation and Fc gamma receptor-mediatedphagocytosis. FEBS Lett 1997; 400: 11-14.
Greenberg S. Signal transduction of phagocytosis. TrendsCell Biol 1995; 5: 93-99.
Agarwal A, Salem P, Robbins KC. Involvement of p72syk,a protein-tyrosine kinase in Fc gamma receptor signalling.J Biol Chem 1993; 268: 15900-15905.
Kiener PA, Rankin BM, Burkhardt AL, Schieven GL,Gilliland LK, Rowley RB, et al. Cross-linking of FcγRI