2021, Número 4
<< Anterior Siguiente >>
Rev Mex Urol 2021; 81 (4)
Trastornos del desarrollo sexual en individuos 46,XX: una actualización
Guerra M, Céspedes C, Forero C, Suárez-Oblando F, Rojas A
Idioma: Ingles.
Referencias bibliográficas: 47
Paginas:
Archivo PDF: 436.41 Kb.
RESUMEN
La interrupción de los procesos de determinación o diferenciación sexual
por cualquier factor genético o ambiental puede resultar en un
trastorno del desarrollo sexual (TDS) con discordancia entre el sexo
cromosómico, gonadal y anatómico. Dicha discordancia tendrá diferentes
expresiones en el fenotipo, incluidas anomalías en los genitales
internos y/o genitales externos.
Material y métodos: Con la finalidad de actualizar conceptos relacionados
con TDS con cariotipo 46,XX sin alteraciones numéricas o estructurales,
se realizó una búsqueda de información de los últimos 10 años
en los que se describen tres subcategorías: trastornos del desarrollo
gonadal (ovárico), trastornos relacionados con el exceso androgénico y
otras anomalías (atresia vaginal, extrofia cloacal, anomalías uterinas y
adherencias labiales).
Conclusión: La gran variabilidad de las manifestaciones fenotípicas en
este tipo de TDS puede crear confusión en los enfoques diagnósticos
guiados por los hallazgos clínicos. Esta variabilidad de presentación,
junto con la falta de conocimiento de la fisiopatología, puede contribuir
a diagnósticos tardíos o no concluyentes. Por estas razones, profundizar
en el conocimiento de las causas y manifestaciones clínicas redundará
en el bienestar del paciente y su familia.
REFERENCIAS (EN ESTE ARTÍCULO)
Acién P, Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med. 2020 Nov 4;9(11):3555. doi: https:// dx.doi.org/10.3390%2Fjcm9113555
Kousta E, Papathanasiou A, Skordis N. Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals. Hormones (Athens). 2010 Sep;9(3):218–131. doi: https:// doi.org/10.14310/horm.2002.1272
Kremen J, Chan Y-M, Swartz JM. Recent findings on the genetics of disorders of sex development. Curr Opin Urol. 2017 Jan;27(1):1–6. doi: https://doi.org/10.1097/ mou.0000000000000353
García-Acero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Curr Urol. 2019;13(4):169-78. doi: https://doi. org/10.1159/000499274
Migeon CJ, Wisniewski AB. Human sex differentiation and its abnormalities. Best Pract Res Clin Obstet Gynaecol. 2003 Feb;17(1):1–18. doi: https://doi.org/10.1053/ybeog.2003.0354
Guerrero-Fernández J, Azcona San Julián C, Barreiro Conde J, Bermúdez de la Vega JA, Carcavilla Urquí A, Castaño González LA, et al. [Management guidelines for disorders / different sex development (DSD)]. An Pediatr (Engl Ed). 2018 Nov;89(5):315.e1-315.e19. doi: https://doi.org/10.1016/j.anpedi.2018.06.009
Barseghyan H, Délot E, Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res. 2015 May;47(5):312-20. doi: https://doi. org/10.1055/s-0035-1548831
MacLaughlin DT, Donahoe PK. Sex determination and differentiation. N Engl J Med. 2004 Jan 22;350(4):367–78. doi: https://doi. org/10.1056/nejmra022784
Sarafoglou K, Ostrer H. Clinical review 111: familial sex reversal: a review. J Clin Endocrinol Metab. 2000 Feb;85(2):483–93. doi: https://doi. org/10.1210/jcem.85.2.6418
García-Acero M, Molina M, Moreno O, Ramirez A, Forero C, Céspedes C, et al. Gene dosage of DAX-1, determining in sexual differentiation: duplication of DAX-1 in two sisters with gonadal dysgenesis. Mol Biol Rep. 2019 Jun;46(3): 2971-8. doi: https://doi.org/10.1007/s11033-019-04758-y
Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008 Jun 12;453(7197):930–4. doi: https://doi. org/10.1038/nature06944
Vetro A, Dehghani MR, Kraoua L, Giorda R, Beri S, Cardarelli L, et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur J Hum Genet. 2015 Aug;23(8):1025–32. doi: https:// doi.org/10.1038/ejhg.2014.237
García-Acero M, Moreno-Niño O, Suárez- Obando F, Molina M, Manotas MC, Prieto JC, et al. Disorders of sex development: Genetic characterization of a patient cohort. Mol Med Rep. 2020 Jan;21(1):97-106. doi: https://dx.doi. org/10.3892%2Fmmr.2019.10819
Verkauskas G, Jaubert F, Lortat-Jacob S, Malan V, Thibaud E, Nihoul-Fékété C. The long-term followup of 33 cases of true hermaphroditism: a 40-year experience with conservative gonadal surgery. J Urol. 2007 Feb;177(2):726-31; discussion 731. doi: https://doi.org/10.1016/j. juro.2006.10.003
Khadilkar KS, Budyal SR, Kasaliwal R, Sathe PA, Kandalkar B, Sanghvi BV, et al. Ovotesticular Disorder of sex development: A Single-Center Experience. Endocr Pract. 2015 Jul;21(7):770–6. doi: https://doi.org/10.4158/ ep15606.or
Ahmad A, Ayub F, Saleem I, Ahmad N. Initial assessment of a child with suspected disorder of sex development. J Pak Med Assoc. 2019 May;69(5):711–7.
Terribile M, Stizzo M, Manfredi C, Quattrone C, Bottone F, Giordano DR, et al. 46,XX Testicular Disorder of Sex Development (DSD): A Case Report and Systematic Review. Medicina (Kaunas). 2019 Jul 12;55(7):E371. doi: https:// doi.org/10.3390/medicina55070371
Alves C, Braid Z, Coeli FB, Mello MP de. 46,XX male - testicular disorder of sexual differentiation (DSD): hormonal, molecular and cytogenetic studies. Arq Bras Endocrinol Metabol. 2010 Nov;54(8):685–9. doi: https:// doi.org/10.1590/s0004-27302010000800004
Li T-F, Wu Q-Y, Zhang C, Li W-W, Zhou Q, Jiang W-J, et al. 46,XX testicular disorder of sexual development with SRY-negative caused by some unidentified mechanisms: a case report and review of the literature. BMC Urol. 2014 Dec 22;14:104. doi: https://dx.doi. org/10.1186%2F1471-2490-14-104
Grinspon RP, Rey RA. Disorders of Sex Development with Testicular Differentiation in SRY-Negative 46,XX Individuals: Clinical and Genetic Aspects. Sex Dev. 2016;10(1):1–11. doi: https://doi.org/10.1159/000445088
Lee GM, Ko JM, Shin CH, Yang SW. A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication. Ann Pediatr Endocrinol Metab. 2014 Jun;19(2): 108–12. doi: https://doi.org/10.6065/ apem.2014.19.2.108
Ergun-Longmire B, Vinci G, Alonso L, Matthew S, Tansil S, Lin-Su K, et al. Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J Pediatr Endocrinol Metab. 2005 Aug;18(8):739–48. doi: https:// doi.org/10.1515/jpem.2005.18.8.739
Croft B, Ohnesorg T, Hewitt J, Bowles J, Quinn A, Tan J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat Commun. 2018 Dec 14;9(1):5319. doi: https://doi.org/10.1038/ s41467-018-07784-9
Hyon C, Chantot-Bastaraud S, Harbuz R, Bhouri R, Perrot N, Peycelon M, et al. Refining the regulatory region upstream of SOX9 associated with 46,XX testicular disorders of Sex Development (DSD). Am J Med Genet A. 2015 Aug;167A(8):1851–8. doi: https://doi. org/10.1002/ajmg.a.37101
Kim G-J, Sock E, Buchberger A, Just W, Denzer F, Hoepffner W, et al. Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX disorder of sex development. J Med Genet. 2015 Apr;52(4):240–7. doi: https://doi.org/10.1136/ jmedgenet-2014-102864
Benko S, Gordon CT, Mallet D, Sreenivasan R, Thauvin-Robinet C, Brendehaug A, et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J Med Genet. 2011 Dec;48(12):825–30. doi: https://doi. org/10.1136/jmedgenet-2011-100255
Xiao B, Ji X, Xing Y, Chen Y-W, Tao J. A rare case of 46, XX SRY-negative male with approximately 74-kb duplication in a region upstream of SOX9. Eur J Med Genet. 2013 Dec;56(12):695–8. doi: https://doi.org/10.1016/j.ejmg.2013.10.001
Gonen N, Futtner CR, Wood S, Garcia-Moreno SA, Salamone IM, Samson SC, et al. Sex reversal following deletion of a single distal enhancer of Sox9. Science. 2018 Jun 29;360(6396):1469–73. doi: https://doi.org/10.1126/science.aas9408
Bashamboo A, McElreavey K. Human sex-determination and disorders of sexdevelopment (DSD). Semin Cell Dev Biol. 2015 Sep;45:77–83. doi: https://doi.org/10.1016/j. semcdb.2015.10.030
Gore AC. Neuroendocrine targets of endocrine disruptors. Hormones (Athens). 2010;9(1):16–27.
Rahier J, Guiot Y, Sempoux C. Morphologic analysis of focal and diffuse forms of congenital hyperinsulinism. Semin Pediatr Surg. 2011 Feb;20(1):3–12. doi: https://doi.org/10.1053/j. sempedsurg.2010.10.010
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 5. Gonadal Dysgenesis. Pediatr Dev Pathol. 2015 Aug;18(4):259-78. doi: https://doi.org/10.2350/14-04-1471-pb.1
Baronio F, Ortolano R, Menabò S, Cassio A, Baldazzi L, Di Natale V, et al. 46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int J Mol Sci. 2019 Sep 17;20(18):E4605. doi: https://doi.org/10.3390/ ijms20184605
Auchus RJ, Chang AY. 46,XX DSD: the masculinised female. Best Pract Res Clin Endocrinol Metab. 2010 Apr;24(2):219–42. doi: https://doi.org/10.1016/j.beem.2009.11.001
Podgórski R, Aebisher D, Stompor M, Podgórska D, Mazur A. Congenital adrenal hyperplasia: clinical symptoms and diagnostic methods. Acta Biochim Pol. 2018;65(1):25-33. doi: https://doi.org/10.18388/abp.2017_2343
Han TS, Walker BR, Arlt W, Ross RJ. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol. 2014 Feb;10(2):115–24. doi: https://doi. org/10.1038/nrendo.2013.239
Bulsari K, Falhammar H. Clinical perspectives in congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Endocrine. 2017 Jan;55(1):19–36. doi: https://doi.org/10.1007/ s12020-016-1189-x
Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet. 2005 Jun 18;365(9477):2125–36. doi: https://doi. org/10.1016/s0140-6736(05)66736-0
Bessiène L, Lombès M, Bouvattier C. [Differences of Sex Development (DSD): Controversies and Challenges]. Ann Endocrinol (Paris). 2018 Sep;79 Suppl 1:S22-30. doi: https:// doi.org/10.1016/s0003-4266(18)31235-6
Hiort O. Long-term management of patients with disorders of sex development (DSD). Ann Endocrinol (Paris). 2014 May;75(2):64–6. doi: https://doi.org/10.1016/j.ando.2014.03.008
Bai Y, Li J, Wang X. Cytochrome P450 oxidoreductase deficiency caused by R457H mutation in POR gene in Chinese: case report and literature review. J Ovarian Res. 2017 Mar 14;10:16. doi: https://dx.doi. org/10.1186%2Fs13048-017-0312-9
Unal E, Demiral M, Yıldırım R, Taş FF, Ceylaner S, Özbek MN. Cytochrome P450 oxidoreductase deficiency caused by a novel mutation in the POR gene in two siblings: case report and literature review. Hormones (Athens). 2021 Jun;20(2):293–8. doi: https://doi.org/10.1007/ s42000-020-00249-z
Shackleton C, Marcos J, Arlt W, Hauffa BP. Prenatal diagnosis of P450 oxidoreductase deficiency (ORD): a disorder causing low pregnancy estriol, maternal and fetal virilization, and the Antley-Bixler syndrome phenotype. Am J Med Genet A. 2004 Aug 30;129A(2):105–12. doi: https://doi.org/10.1002/ajmg.a.30171
Vitellius G, Lombes M. GENETICS IN ENDOCRINOLOGY: Glucocorticoid resistance syndrome. Eur J Endocrinol. 2020 Feb 1;182(2):R15–27. doi: https://doi.org/10.1530/ eje-19-0811
Huizenga NA, de Lange P, Koper JW, de Herder WW, Abs R, Kasteren JH, et al. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene. J Clin Endocrinol Metab. 2000 May;85(5):2076–81. doi: https://doi.org/10.1210/jcem.85.5.6542
Lin L, Ercan O, Raza J, Burren CP, Creighton SM, Auchus RJ, et al. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans. J Clin Endocrinol Metab. 2007 Mar;92(3):982–90. doi: https:// doi.org/10.1210/jc.2006-1181
Morcel K, Camborieux L, Programme de Recherches sur les Aplasies Müllériennes, Guerrier D. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Orphanet J Rare Dis. 2007 Mar 14;2:13. doi: https://doi.org/10.1186/1750- 1172-2-13