2021, Número 5
<< Anterior Siguiente >>
Med Int Mex 2021; 37 (5)
Implicaciones cardiovasculares, hematológicas y renales del COVID-19
Cabello-Ganem A, Espino-Rojas MF, Ramírez-Perea F, López-Ávila A
Idioma: Español
Referencias bibliográficas: 91
Paginas: 813-826
Archivo PDF: 344.59 Kb.
RESUMEN
La enfermedad por coronavirus 2019 (COVID-19) es causada por el coronavirus
tipo 2 del síndrome respiratorio agudo severo (SARS-CoV-2). Aunque la mayor parte
de las investigaciones y el manejo de los pacientes se ha enfocado en el aspecto
respiratorio, es sumamente importante tomar en cuenta las manifestaciones extrapulmonares
del COVID-19, que pueden llegar a ser letales. Por ello, esta revisión
se enfoca en tres sistemas estrechamente relacionados y afectados por SARS-CoV-2:
cardiovascular, renal y hematológico. SARS-CoV-2 entra a las células mediante la
enzima convertidora de angiotensina 2 (ACE2), un regulador esencial del sistema
renina-angiotensina-aldosterona (RAAS) que se ha caracterizado en múltiples enfermedades
cardiovasculares y renales. La hiperinflamación en COVID-19 afecta la
función de estos sistemas mediante disfunción microvascular, hipercoagulabilidad,
arritmias y lesión renal. Cabe resaltar la importancia de los diferentes marcadores
multisistémicos, ya que se ha demostrado que éstos son predictores de gravedad y
de gran utilidad en el tratamiento de pacientes con COVID-19 para evitar futuras
complicaciones relacionadas con la enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733. doi: 10.1056/ NEJMoa2001017.
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17: 181-192. doi: 10.1038/s41579-018-0118-9.
Tanonaka K, Marunouchi T. Angiotensin-converting enzyme 2. Folia Pharmacol Jpn 2016; 147: 120-121. doi: 10.1254/ fpj.147.120.
Qian Z, Travanty E, Oko L, Edeen K, Berglund A, Ito Y, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndromecoronavirus. Am J Respir Cell Mol Biol 2013; 48: 742-748. doi: 10.1165/rcmb.2012-0339OC.
Glowacka I, Bertram S, Müller M, Allen P, Soilleux E, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85: 4122-413. doi: 10.1128/ JVI.02232-10.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.e8. doi: 10.1016/j. cell.2020.02.052.
Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 2005; 24: 1634-1643. doi: 10.1038/sj.emboj.7600640.
Kwong JC, Schwartz K, Campitelli M, Chung H, Crowcroft N, Karnauchow T, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018; 378: 345-353. doi: 10.1056/NEJMoa1702090.
Madjid M, Miller C, Zarubaev V, Marinich I, Kiselev O, Lobzin Y, et al. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: Results from 8 years of autopsies in 34 892 subjects. Eur Heart J 2007; 28: 1205- 1210. doi: 10.1093/eurheartj/ehm035.
Nguyen JL, Yang W, Ito K, Matte T, Shaman J, Kinney P. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol 2016; 1: 274-281. doi: 10.1001/ jamacardio.2016.0433.
Smeeth L, Thomas S, Hall A, Hubbard R, Farrington P, Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 2004; 351: 2611-2618. doi: 10.1056/NEJMoa041747.
Sellers SA, Hagan RS, Hayden FG, Fischer WA. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017; 11: 372-393. doi: 10.1111/irv.12470.
Kodama M. Influenza myocarditis. Circ J 2010; 74: 2060- 2061. doi: 10.1253/circj.cj-10-0833.
Paddock CD, Liu L, Denison A, Bartlett J, Holman R, Deleon- Carnes M, et al. Myocardial injury and bacterial pneumonia contribute to the pathogenesis of fatal influenza B virus infection. J Infect Dis 2012; 205: 895-905. doi: 10.1093/infdis/jir861.
Nin N, Lorente J, Soto L, Ríos F, Hurtado J, Arancibia F, et al. Acute kidney injury in critically ill patients with 2009 influenza A (H1N1) viral pneumonia: An observational study. Intensive Care Med 2011; 37: 768-774. doi: 10.1007/ s00134-011-2167-7.
Pettilä V, Webb S, Bailey M, Howe B, Seppelt I, Bellomo R. Acute kidney injury in patients with influenza A (H1N1) 2009. Intensive Care Med 2011; 37: 763-767. doi: 10.1007/ s00134-011-2166-8.
Carmona F, Carlotti AP, Ramalho L, Costa S, Ramalho FS. Evidence of renal infection in fatal cases of 2009 pandemic influenza A (H1N1). Am J Clin Pathol 2011; 136: 416-423. doi: 10.1309/AJCP1Y6LLHWSKYHW.
Bunce PE, High S, Nadjafi M, Stanley K, Conrad Liles W, Christian M. Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis 2011; 52:14-17. doi: 10.1093/cid/ciq125.
Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis 2016; 49: 129-133. doi: 10.1016/j.ijid.2016.06.015.
González-Muniesa P, Martínez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos R, et al. Obesity Nat Rev Dis Primers 2017; 3. doi: 10.1038/nrdp.2017.34.
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98-107. doi: 10.1038/nri2925.
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19: 517-532. doi: 10.1038/s41577-019-0160-5.
Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med 2016; 36: 78-80. doi: 10.5144/0256-4947.2016.78.
Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis virus transmission pathways. J Pathol 2004; 203: 622-630. doi: 10.1002/path.1560.
Yu CM, Wong RS, Wu EB, Kong SL, Wong J, Yip G, Soo Y, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J 2006; 82: 140-144. doi: 10.1136/ pgmj.2005.037515.
Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep 2017; 7: 1-12. doi: 10.1038/s41598-017-09536-z.
Panesar NS. What caused lymphopenia in SARS and how reliable is the lymphokine status in glucocorticoidtreated patients? Med Hypotheses 2008; 71: 298-301. doi: 10.1016/j.mehy.2008.03.019.
Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, Fung KS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int 2005; 67: 698-705. doi: 10.1111/j.1523-1755.2005.67130.x.
Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 2016; 6: 1-12. doi: 10.1038/srep25359.
Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 2006; 6: 271-276. doi: 10.1016/j.coph.2006.03.001.
Qiang Ni SM AT1 receptor signaling pathways in the cardiovascular system. Physiol Behav 2018; 176: 139-148.
Dhanachandra Singh K, Karnik SS. Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal 2017; 01: 1-8. doi: 10.4172/jcs.1000111.
Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, et al. Hypertension. Nat Rev Dis Primers 2018; 4. doi: 10.1038/nrdp.2018.14.
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/ Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118: 1313-1326. doi: 10.1161/ CIRCRESAHA.116.307708.
Bader M, Alenina N, Young D, Santos RAS, Touyz RM. The Meaning of Mas. Hypertension 2018; 72: 1072-1075. doi: 10.1161/HYPERTENSIONAHA.118.10918.
Gironacci MM, Adamo HP, Corradi G, Santos RA, Ortiz P, Carretero OA. Angiotensin (1-7) Induces Mas Receptor Internalization. Hypertension 2011; 58: 176-181. doi: 10.1161/HYPERTENSIONAHA.111.173344.
Vaduganathan M, Vardeny O, Michel T, Mcmurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382: 1653-1659. doi: 10.1056/NEJMsr2005760.
Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ace-inhibitors and arbs in covid-19 patients. Elife 2020; 9: 1-8. doi: 10.7554/eLife.57278.
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63: 457-460. doi: 10.1007/s11427-020-1637-5.
Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli- Berget F, al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020; doi:10.1093/cvr/cvaa106.
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect of angiotensinconverting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111: 2605-2610. doi: 0.1161/CIRCULATIONAHA. 104.510461.
South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020; 16: 305-307. doi: 10.1038/s41581-020-0279-4.
Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, Li Q, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect 2020; doi:10.1016/j.jinf.2020.04.021.
Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the cardiologist: basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC Basic to Transl Sci 2020; 5: 518-536. doi: 10.1016/j.jacbts.2020.04.002.
Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39: 618-625. doi: 10.1111/j.1365- 2362.2009.02153.x.
Inciardi RM, Lupi L, Zaccone G, Italia L, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 2019, 1-6. doi: 10.1001/ jamacardio.2020.1096.
Gnecchi M, Moretti F, Bassi E, Leonardi S, Totaro R, et al. Myocarditis in a 16-year-old boy positive for SARSCoV- 2. Lancet 2020; 395: e116. doi: 10.1016/S0140- 6736(20)31307-6.
Libby P. The heart in COVID-19: primary target or secondary bystander? JACC Basic to Transl Sci 2020; 5: 537-542. doi: 10.1016/j.jacbts.2020.04.001.
Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020; 126: 1443-1455. doi: 10.1161/CIRCRESAHA. 120.317055.
Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol 2017; 14: 521-535. doi: 10.1038/nrcardio.2017.61.
Aromolaran AS, Srivastava U, Alí A, Chahine M, et al. Interleukin- 6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS One 2018; 13: 1-17. doi: 10.1371/journal.pone.0208321.
Liu K, Fang YY, Deng Y, Liu W, Wang MF, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020; 133: 1025-1031. doi: 10.1097/CM9.0000000000000744.
Wang D, Hu B, Hu C, Zhu F, Liu X, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc 2020; 323: 1061-1069. doi: 10.1001/ jama.2020.1585.
Guo T, Fan Y, Chen M, Wu X, et al. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 2019, 1-8. doi: 10.1001/jamacardio.2020.1017.
Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med 2020; 382: 2372-2374. doi: 10.1056/NEJMc2010419.
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A Review. JAMA - J Am Med Assoc 2020; 323: 1824-1836. doi: 10.1001/jama.2020.6019.
Driggin E, Madhavan M, Bikdeli B, Chuich T, Laracy J, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 Pandemic. J Am Coll Cardiol 2020; 75: 2352-2371. doi: 10.1016/j. jacc.2020.03.031.
Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19— Preliminary Report. N Engl J Med 2020; 1-11. doi:10.1056/ NEJMoa2021436.
Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol 2007; 157: 545-559. doi: 10.1530/EJE-07-0455.
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med 2020. doi:10.1056/NEJMoa2022483.
Folegatti PM, Ewer KJ, Aley P, Angus B, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, singleblind, randomised controlled trial. Lancet 2020; 1-13. doi:10.1016/S0140-6736(20)31604-4.
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18: 844-847. doi: 10.1111/jth.14768.
Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers 2016; 2: 1-16. doi: 10.1038/ nrdp.2016.37.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20: 363-374. doi: 10.1038/s41577- 020-0311-8.
Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 2950-2973. doi: 10.1016/j.jacc.2020.04.031.
Magro C, Mulvey JJ, Berlin D, Nuovo G, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res 2020; 220:1-13. doi: 10.1016/j. trsl.2020.04.007.
Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol 2008; 632: 71-79. doi: 10.1007/978-0- 387-78952-1_6.
Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, et al. High risk of thrombosis in patients with severe SARSCoV- 2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46: 1089-1098. doi: 10.1007/ s00134-020-06062-x.
Divani AA, Andalib S, Di Napoli M, Lattanzi S, et al. Coronavirus Disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis 2020; 29: 104941. doi: 10.1016/j.jstrokecerebrovasdis. 2020.104941.
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis F, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020; 95: 834-847. doi: 10.1002/ajh.25829.
Mao L, Jin H, Wang M, Hu Y, Chen S, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77: 683-690. doi: 10.1001/jamaneurol.2020.1127.
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18: 1094-1099. 1099. doi: 10.1111/jth.14817.
Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: A comment. J Thromb Haemost 2020; 1-4. doi:10.1111/jth.14860.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. doi: 10.1016/ S0140-6736(20)30183-5.
S³omka A, Kowalewski M, ¯ekanowska E. Coronavirus Disease 2019 (COVID-19): A short review on hematological manifestations. Pathogens 2020; 9: 493. doi: 10.3390/ pathogens9060493.
Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. COVID-19 in critically ill patients in the Seattle region — Case series. N Engl J Med 2020; 382: 2012-2022. doi: 10.1056/NEJMoa2004500.
Li K, Hao Z, Zhao X, Du J, Zhou Y. SARS-CoV-2 infection-induced immune responses: friends or foes? Scand J Immunol 2020; 92: 129-134. doi: 10.1111/sji.12895.
Oliveira-Toledo S, Sousa-Nogueira L, Carvalho M, Alves-Rios DR, Barros-Pinheiro M. COVID-19: Review and hematologic impact. Clin Chim Acta 2020; 510: 170-176. doi: 10.1016/j. cca.2020.07.016.
Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy Eur J Allergy Clin Immunol 2020; 75: 1564-1581. doi: 10.1111/ all.14364.
Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol 2020; 99: 1205-1208. doi: 10.1007/s00277-020-04019-0.
Liu X, Zhang R, He G. Hematological findings in coronavirus disease 2019: indications of progression of disease. Ann Hematol 2020; 99: 1421-1428. doi: 10.1007/s00277-020- 04103-5.
Zini G, Bellesi S, Ramundo F, d’Onofrio G. Morphological anomalies of circulating blood cells in COVID-19. Am J Hematol 2020; 95: 870-872. doi: 10.1002/ajh.25824.
Hirsch JS, Ng JH, Ross DW, Sharma P, Shah H, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020; 98: 209-218. doi: 10.1016/j.kint.2020.05.006.
Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020; 395: 1763- 1770. doi: 10.1016/S0140-6736(20)31189-2.
Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on Kidney Dysfunctions of COVID-19 Patients. SSRN Electron J 2020; 1-25. doi:10.2139/ssrn.3559601. TAMBIÉN APARECE EL DOI: https://doi.org/10.1101/2020.02.08.20021212
Nasr SH, Kopp JB. COVID-19-Associated Collapsing Glomerulopathy: An Emerging Entity. Kidney Int Reports 2020; 5: 759-761. doi: 10.1016/j.ekir.2020.04.030.
Su H, Yang M, Wan C, Yi L, Tang F, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98: 219-22. doi: 10.1016/j.kint.2020.04.003.
Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med 2020; 46: 1339-1348. doi: 10.1007/s00134-020-06153-9.
European Society of Cardiology. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic 2020; 1-115.
Interim additional guidance for infection prevention and control recommendations for patients with suspected or confirmed COVID-19 in outpatient hemodialysis facilities | CDC. https:// www.cdc.gov/coronavirus/2019-ncov/hcp/dialysis.html.
Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 1023-1026. doi:10.1111/jth.14810.