2021, Número 2
<< Anterior Siguiente >>
Acta Ortop Mex 2021; 35 (2)
Una visión general sobre la correlación entre el zinc en la sangre, la ingesta de zinc, la suplementación de zinc y la densidad mineral ósea en los seres humanos
Rondanelli M, Peroni G, Gasparri C, Infantino V, Naso M, Riva A, Petrangolini G, Perna S, Tartara A, Faliva M
Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 142-152
Archivo PDF: 215.60 Kb.
RESUMEN
Introducción: En caso de deficiencia de zinc, se limitará la síntesis muscular y ósea. Los estudios en humanos sobre zinc y salud ósea son pocos y no se han publicado comentarios sobre este tema. Por lo tanto, el objetivo de esta revisión narrativa es considerar el estado de la técnica sobre la correlación entre el zinc en la sangre, la ingesta diaria de zinc, la suplementación de zinc y la densidad mineral ósea.
Material y métodos: Se realizó una revisión narrativa.
Resultados: Esta revisión incluyó 16 estudios elegibles: ocho se refieren al zinc en sangre; tres estudios se refieren a la ingesta de Zn y cinco estudios se refieren a la suplementación de Zn.
Conclusión: Los niveles de zinc en sangre parecen ser más bajos en sujetos con patología relacionada con el metabolismo óseo. En cuanto a la ingesta diaria de zinc, una alta proporción de la población, más de 20%, parece estar en riesgo de tener una ingesta inadecuada de zinc. La literatura sugiere que una ingesta insuficiente de zinc (menos de 3 mg/día) podría ser un factor de riesgo de fracturas y para el desarrollo de osteopenia y osteoporosis. La suplementación con zinc (40-50 g/día) podría tener efectos beneficiosos sobre la salud ósea para mantener la densidad mineral ósea y una curación más rápida en caso de fracturas, con resultados aún mejores en situaciones de reducción de la ingesta de zinc a través de los alimentos.
REFERENCIAS (EN ESTE ARTÍCULO)
King J, Keen C. Zinc. In: Shils M, Olson J, Shike M (eds) Modern nutrition in health and disease. Baltimore: Williams & Wilkins, 1999, pp. 223-39.
Cousins RJ. Theoretical and practical aspects of zinc uptake and absorption. Adv Exp Med Biol. 1989; 249: 3-12.
Ieo. BDA. Banca Dati di Composizione degli Alimenti per studi epidemiologici in Italia. 2015. [Accessed 20 September 2007], http://www.bda-ieo.it
Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium. In: National Academies Press. 2001.
Cousins R. Systemic transport of zinc. In: Mills C (ed) Zinc in human biology. New York: Springer-Verlag, 1989, pp. 79-93.
Lee HH, Prasad AS, Brewer GJ, et al. Zinc absorption in human small intestine. Am J Physiol. 1989; 256(1 Pt 1): G87-91. doi: 10.1152/ajpgi.1989.256.1.g87.
Lonnerdal B. Intestinal absorption of zinc. In: Mills CF (ed) Zinc in Human Biology. New York, pp. 33-55.
Grider A, Bailey LB, Cousins RJ. Erythrocyte metallothionein as an index of zinc status in humans. Proc Natl Acad Sci USA. 1990; 87(4): 1259-62.
Cousins R. Zinc. In: Filer L, Ziegler EE (eds) Present knowledge in nutrition. Washington: International Life Science Institute-Nutrition Foundation, 1996, pp. 293-306.
Sadighi A, Roshan MM, Moradi A, et al. The effects of zinc supplementation on serum zinc, alkaline phosphatase activity and fracture healing of bones. Saudi Med J. 2008; 29: 1276-9.
Hashizume M, Yamaguchi M. Stimulatory effect of β-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem. 1993; 122: 59-64.
Kishi S, Yamaguchi M. Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol. 1994; 48(6): 1225-30.
Yamaguchi M, Segawa Y, Shimokawa N, et al. Inhibitory effect of β-alanyl-L-histidinato zinc on bone resorption in tissue culture. Pharmacology. 1992; 45: 292-300.
Yamaguchi M, Kishi S. Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biochem. 1996; 158(2): 171-7.
Yamaguchi M, Uchiyama S. Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med. 2004; 14: 81-5.
Zou W, Hakim I, Tschoep K, et al. Tumor necrosis factor-α mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem. 2001; 83: 70-83.
Yamaguchi M, Kitajima T. Effect of estrogen on bone metabolism in tissue culture: enhancement of the steroid effect by zinc. Res Exp Med. 1991; 191: 145-154.
Yamaguchi M, Inamoto K. Differential effects of calcium-regulating hormones on bone metabolism in weanling rats orally administered zinc sulfate. Metabolism. 1986; 35: 1044-7.
Yamaguchi M, Yamaguchi R. Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol. 1986; 35(5): 773-7.
Hadley KB, Newman SM, Hunt JR. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem. 2010; 21(4): 297-303.
Hie M, Iitsuka N, Otsuka T, et al. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone. 2011; 49(6): 1152-9.
Yamaguchi M, Gao YH. Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. Gen Pharmacol. 1998; 30(3): 423-7.
Hsieh H, Navia J. Zinc deficiency and bone formation in guinea pig alveolar implants. J Nutr. 1980; 110(8): 1581-8.
Ryz NR, Weiler HA, Taylor CG. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study. Ann Nutr Metab. 2009; 54: 218-26.
Suzuki T, Kajita Y, Katsumata SI, et al. Zinc deficiency increases serum concentrations of parathyroid hormone through a decrease in serum calcium and induces bone fragility in rats. J Nutr Sci Vitaminol (Tokyo). 2015; 61(5): 382-90.
Egger M, Smith GD, Altman DG. Systematic reviews in health care : meta-analysis in context. BMJ Books, 2001.
Atik OS. Zinc and senile osteoporosis. J Am Geriatr Soc. 1983; 31(12): 790-1.
Gür A, Colpan L, Nas K, et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab. 2002; 20(1): 39-43.
Mutlu M, Argun M, Kilic E, et al. Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res. 2007; 35(5): 692-5.
Okyay E, Ertugrul C, Acar B, et al. Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas. 2013; 76(4): 320-5.
Liu SZ, Yan H, Xu P, et al. Correlation analysis between bone mineral density and serum element contents of postmenopausal women in Xi'an urban area. Biol Trace Elem Res. 2009; 131(3): 205-14.
Arikan DC, Coskun A, Ozer A, et al. Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol Trace Elem Res. 2011; 144(1-3): 407-17.
Relea P, Revilla M, Ripoll E, et al. Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing. 1995; 24(4): 303-7.
Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab. 2015; 12: 18-21.
Elmstahl S, Gullberg B, Janzon L, et al. Increased incidence of fractures in middle-aged and elderly men with low intakes of phosphorus and zinc. Osteoporos Int. 1998; 8: 333-40.
Hyun TH, Barrett-Connor E, Milne DB. Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr. 2004; 80(3): 715-21.
Ronaghy H, Reinhold J, Mahloudji M, et al. Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. Am J Clin Nutr. 1974; 27: 112-21.
Strause L, Saltman P, Smith K, et al. Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J Nutr. 1994; 124: 1060-4.
Nielsen FH, Lukaski HC, Johnson LK, et al. Reported zinc, but not copper, intakes influence whole-body bone density, mineral content and T score responses to zinc and copper supplementation in healthy postmenopausal women. Br J Nutr. 2011; 106: 1872-9.
Nielsen FH, Milne DB. A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur J Clin Nutr. 2004; 58: 703-10.