2021, Número 2
<< Anterior Siguiente >>
Enf Infec Microbiol 2021; 41 (2)
El antígeno leucocitario humano en la COVID-19, mecanismo de reconocimiento inmunológico olvidado: una revisión exploratoria
Tuta QE, Martínez LJ, Mantilla BG, Santos GA, Mazzei SE, Briceño BI
Idioma: Español
Referencias bibliográficas: 52
Paginas: 73-80
Archivo PDF: 273.51 Kb.
RESUMEN
Introducción. Los alelos HLA juegan un papel fundamental en el desarrollo de la respuesta inmune frente a infecciones
virales.
Objetivo. Reunir la información disponible acerca de la asociación de diferentes alelos hla con mayor protección o
susceptibilidad; además, el efecto en las complicaciones asociadas a la infección por SARS-COV-2.
Metodología. Se realizó una búsqueda de información en las bases de datos Scopus, PubMed/Medline, lilacs y
Google Académico que respondieran la pregunta de investigación: ¿Cuál es la asociación entre el HLA y la infección
por SARS-COV-2 y la gravedad de la enfermedad? Se incluyeron registros de ensayos clínicos de las bases de datos
de la Plataforma Registros Internacionales de Ensayos Clínicos de la oms.
Resultados. Se encontró que los alelos HLA-A*25:01, HLA-B*46:01 y HLA-C*01:02 se asociaron con una mayor susceptibilidad
a la infección, mientras que los alelos HLA-A*02:01, HLA-A*24:02 y HLA-B*27:07 se asociaron a mayor
gravedad de la enfermedad, y los alelos HLA-A*02:02, HLA-B*15:03 y HLA-C*12:03 como factor protector de la COVID-19.
Conclusiones. la asociación entre susceptibilidad, protección y severidad con los distintos tipos de hla se reportan
principalmente en análisis
in silico, y su precisión es limitada ya que requieren un respaldo basado en estudios
experimentales
in vitro, in vivo y ensayos clínicos en diferentes poblaciones. Es necesario un mayor enfoque en
la afinidad de los diversos alelos del HLA por el proteoma del SARS-COV-2 para esclarecer la inmunopatogenia de la
enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. et al., “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study”, Lancet, 2020. doi: https:// doi.org/10.1016/S0140-6736(20)30211-7.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. et al., “A novel coronavirus from patients with pneumonia in China, 2019”, N Engl J Med, 2020, 382 (8): 727-733. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y. et al.,
“Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia”, N Engl J Med, 2020, 382 (13): 1199-1207.
Perrella, A., Carannante, N., Berretta, M., Rinaldi, M., Maturo, N. y Rinaldi, L., “Novel coronavirus 2019 (sars-cov-2): a global emergency that needs new approaches?”, Eur Rev Med Pharmacol Sci, 2020, 24: 2162-2164.
World Health Organization (who), “Coronavirus disease 2019”. Disponible en: https://www.who.int/emergencies/ diseases/novel-coronavirus-2019.
Wu, Z. y McGoogan, J.M., “Characteristics of and important lessons from the coronavirus disease 2019 (covid- 19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention”, jama, 2020, 323 (13): 1239-1242. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S.,
Strominger, J.L. y Wiley, D.C., “Structure of the human class i histocompatibility antigen, hla-a2”, Nature, 1987, 329 (6139): 506-512.
Dendrou, C.A., Petersen, J., Rossjohn, J. y Fugger, L., “hla variation and disease”, Nat Rev Immunol, 2018, 18 (5): 325-339.
Lin, M., Tseng, H.-K., Trejaut, J.A., Lee, H.-L., Loo, J.-H., Chu, C.-C., Chen, P.-J., Su, Y.-W., Lim, K.H., Tsai, Z.-U., Lin, R.-Y., Lin, R.-S. y Huang, C.-H., “Association of hla class i with severe acute respiratory syndrome coronavirus infection”, bmc Med Genet, 2003, 4:9.
Ng, M.H.L., Lau, K.M., Li, L. et al., “Association of human-leukocyte-antigen class i (b*0703) and class ii (drb1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome”, J Infect Dis, 2004, 190 (3): 515-518.
Dendrou, C.A., Petersen, J., Rossjohn, J. y Fugger, L., “hla variation and disease”, Nat Rev Immunol, 2018, 18: 325-339.
Amanat, F. y Krammer, F., “sars-cov-2 vaccines: status report”, Immunity, 2020, 52: 583-589.
Arksey, H. y O’Malley, L., “Scoping studies: towards a methodological framework”, Int J Soc Res Methodol, 2005, 8: 19-32.
Levac, D., Colquhoun, H. y O’Brien, K.K., “Scoping studies: advancing the methodology”, Implement Sci, 2010, 5: 69.
Peters, M., Godfrey, C., Khalil, H., McInerney, P., Parker, D. y Soares, C., “Guidance for conducting systematic scoping reviews”, Int J Evid Based Healthc, 2015, 13 (3): 141-146.
Tricco, A.C., Lillie, E., Zarin ,W., O’Brien, K.K., Colquhoun, H., Levac, D. et al., “prisma extension for scoping reviews (prisma-scr): checklist and explanation”, Ann Intern Med, 2018, 169: 467.
Moher, D., Liberati, A., Tetzlaff, J. y Altman, D.G., “Preferred reporting items for systematic reviews and me- ta-analyses: the prisma statement”, plos Med, 2009, 6: e1000097.
World Health Organization, “who Registry Network 2020”. Disponible en: https://www.who.int/ictrp/network/ primary/en/. Fecha de consulta: 22 de noviembre de 2020.
Ouzzani, M., Hammady, H., Fedorowicz, Z. y Elmagarmid, A., “Rayyan: a web and mobile app for systematic reviews”, Syst Rev, 2016, 5: 210.
Grudniewicz, A., Nelson, M., Kuluski, K., Lui, V., Cunningham, H.V., Nie, J.X. et al., “Treatment goal setting for complex patients: protocol for a scoping review”, bmj Open, 2016, 6: e011869.
Nguyen, A., David, J.K., Maden, S.K., Wood, M.A., Weeder, B.R., Nellore, A. y Thompson, R.F., “Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2”, J Virol, 2020, 94 (13): e00510-20.
Tomita, Y., Ikeda, T., Sato, R. y Sakagami, T., “Association between hla gene polymorphisms and mortality of covid- 19: an in silico analysis”, Immun Inflamm Dis, 2020, 8 (4): 684-694.
Toyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y. y Kiyotani, K., “sars-cov-2 genomic variations associated with mortality rate of covid-19”, J Hum Genet, 2020, 65 (12): 1075-1082.
Novelli, A., Andreani, M., Biancolella, M., Liberatoscioli, L., Passarelli, C., Colona, V.L., Rogliani, P., Leonardis, F., Campana, A., Carsetti, R., Andreoni, M., Bernardini, S., Novelli, G. y Locatelli, F., “hla allele frequencies and susceptibility to covid-19 in a group of 99 Italian patients”, hla, 2020, 96 (5): 610-614.
Yung, Y.L., Cheng, C.K., Chan, H.Y., Xia, J.T., Lau, K.M., Wong, R.S.M., Wu, A.K.L., Chu, R.W., Wong, A.C.C., Chow, E.Y.D., Yip, S.F., Leung, J.N.S., Lee, C.K. y Ng, M.H.L., “Association of hla-b22 serotype with sars-cov-2 susceptibility in Hong Kong Chinese patients”, hla, 2020. doi: 10.1111/tan.14135.
Lorente, L., Martín, M.M., Franco, A., Barrios, Y., Cáceres, J.J., Solé-Violán, J., Pérez, A., Marcos y Ramos, J.A., Ramos-Gómez, L., Ojeda, N., Jiménez, A., Working Group on covid-19 Canary icu, Annex y Members of the Biomepoc Group, “hla genetic polymorphisms and prognosis of patients with covid-19”, Med Intensiva,
2020: S0210-5691(20)30266-7. Poulton, K., Wright, P., Hughes, P., Savic, S., Welberry, Smith, M., Guiver, M., Morton, M., Van Dellen, D., Tholouli, E., Wynn, R. y Clark, B., “A role for human leucocyte antigens in the susceptibility to sars-cov-2 infection observed in transplant patients”, Int J Immunogenet, 2020, 47(4): 324-328.
Warren, R.L. y Birol, I., “Retrospective in silico hla predictions from covid-19 patients reveal alleles associated with disease prognosis”, medRxiv [preimpresión], 2020. doi:10.27.20220863.
García-Silva, R., Hernández-Dono, S., Mena, L. y Granados, J., “Mexican human leukocyte antigen alleles might predict clinical outcome in sars-cov-2 infected patients”, Rev Invest Clin, 2020, 72 (3): 178-179.
Moura, R.R., Agrelli, A., Santos-Silva, C.A. et al., “Immunoinformatic approach to assess sars-cov-2 protein s epitopes recognised by the most frequent mhc-i alleles in the Brazilian population”, J Clin Pathol. doi:10.1136/ jclinpath-2020-206946.
Tomita, Y., Ikeda, T., Sato, R. y Sakagami, T., “Association between hla gene polymorphisms and mortality of covid- 19: an in silico analysis”, Immun Inflamm Dis, 2020, 8 (4): 684-694.
Pisanti, S., Deelen, J., Gallina, A.M., Caputo, M., Citro, M., Abate, M., Sacchi, N., Vecchione, C. y Martinelli, R., “Correlation of the two most frequent hla haplotypes in the Italian population to the differential regional incidence of covid-19”, J Transl Med, 2020, 18 (1): 352.
Correale, P, Mutti, L., Pentimalli, F., Baglio, G., Saladino, R.E., Sileri, P. y Giordano, A., “hla-b*44 and c*01 prevalence correlates with covid-19 spreading across Italy”, Int J Mol Sci, 2020, 21 (15): 5205.
Guihot, A., Litvinova, E., Autran, B., Debré, P. y Vieillard, V., “Cell-mediated immune responses to covid-19 infection”, Front Immunol, 2020, 11:1662. doi: 10.3389/fimmu. 2020.01662.
Wang, W., Zhang, W., Zhang, J., He, J. y Zhu, F., “Distribution of hla allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (covid-19)”, hla, 2020, 96 (2):194-196.
Romero-López, J.P., Carnalla-Cortés, M., Pacheco-Olvera, D.L., Ocampo-Godínez, J.M., Oliva-Ramírez, J., Moreno- Manjón, J., Bernal-Alferes, B., López-Olmedo, N., García-Latorre, E., Domínguez-López, M.L., Reyes-Sandoval, A. y Jiménez-Zamudio, L., “A bioinformatic prediction of antigen presentation from sars-cov-2 spike protein revealed a theoretical correlation of hla-drb1*01 with covid-19 fatality in Mexican population: an ecological approach”, J Med Virol, 2020:10.1002/jmv.26561.
Olwenyi, O.A., Dyavar, S.R., Acharya, A., Podany, A.T., Fletcher, C.V., Ng, C.L., Reid, S.P. y Byrareddy, S.N., “Immuno- epidemiology and pathophysiology of coronavirus disease 2019 (covid-19)”, J Mol Med (Berlín), 2020, 98 (10): 1369-1383.
Warren, R.L. y Birol, I., “hla predictions from the bronchoalveolar lavage fluid and blood samples of eight covid- 19 patients at the pandemic onset”, Bioinformatics, 2020: btaa756. doi: 10.1093/bioinformatics/btaa756. Epub ahead of print.
Iturrieta-Zuazo, I., Rita, C.G., García-Soidán, A. et al., “Possible role of hla class-i genotype in sars-cov-2 infection and progression: a pilot study in a cohort of covid-19 Spanish patients”, Clin Immunol, 2020, 219: 108572.
Kiyotani, K., Toyoshima, Y., Nemoto, K. y Nakamura, Y., “Bioinformatic prediction of potential t cell epitopes for sars-cov-2”, J Hum Genet, 2020, 65 (7): 569-575.
Warren, R.L. y Birol, I., “hla predictions from the bronchoalveolar lavage fluid samples of five patients at the early stage of the Wuhan seafood market covid-19 outbreak”, ArXiv [preimpresión], 2020: arXiv:2004.07108v3.
Guan, W.-J., Liang, W.-H., Zhao, Y., Liang, H.-R., Chen, Z.-S., Li, Y.-M., Liu, X.-Q., Chen, R.-C., Tang, C.-L., Wang, T. et al., “Comorbidity and its impact on 1 590 patients with covid-19 in China: a nationwide analysis”, medRxiv, 2020. doi:10.1101/2020.02.25.20027664.
Thevarajan, I. et al., “Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe covid-19”, Nat Med, 2020, 26:453-455.
Debnath, M., Banerjee, M. y Berk, M., “Genetic gateways to covid-19 infection: implications for risk, severity, and outcomes”, Faseb J, 2020, 34 (7): 8787- 8795.
Singh, S.P., Pritam, M., Pandey, B. y Yadav, T.P., “Microstructure, pathophysiology, and potential therapeutics of covid-19: a comprehensive review”, J Med Virol, 2020: 10.1002/jmv.26254.
Chen, Y.M., Liang, S.Y., Shih, Y.P. et al., “Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003”, J Clin Microbiol, 2006, 44: 359-365.
Rosenbaum, J.T., Hamilton, H., Weisman, M.H., Reveille, J.D., Winthrop, K.L. y Choi, D., “The effect of hla-b27 on susceptibility and severity of covid-19”, J Rheumatol, 202o: jrheum.200939.
Blackwell, J.M., Jamieson, S.E. y Burgner, D., “hla and infectious diseases”, Clin Microbiol Rev, 2009, 22: 370- 385.
D’Ettorre, G., Recchia, G., Ridolfi, M., Siccardi, G., Pinacchio, C., Innocenti, G.P., Santinelli, L., Frasca, F., Bitossi, C., Ceccarelli, G., Borrazzo, C., Antonelli, G., Scagnolari, C. y Mastroianni, C.M., “Analysis of type i ifn response and t cell activation in severe covid-19/hiv-1 coinfection: a case report”, Medicine (Baltimore), 2020, 99 (36): e21803.
Castañeda-Casado, P., Gresham, S., Jiménez-Navarro, E., Giddings, A,, Muñoz-Muriedas, J., Hattotuwagama, C,. Harvey, J. y Robinson, S., “Aplicación de un sistema in silico múltiple para la priorización en la selección de compuestos antimaláricos”, Revista de Toxicología, 2014, 31 (2): 168-171. Recuperado de: https://www. redalyc.org/articulo.oa?id=91932969010.
Zietz, M., Zucker, J. y Tatonetti, N.P., “Testing the association between blood type and covid-19 infection, intubation, and death”, medRxiv [preimpresión], 2020: 2020.04.08.20058073.
Ellinghaus, D. et al., “Genomewide association study of severe covid-19 with respiratory failure”, N Engl J Med, 2020, 383 (16): 1522-1534.