2021, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2021; 40 (2)
Alteraciones metabólicas y funcionales del músculo esquelético y cardíaco en el síndrome metabólico y su papel regulador de la sensibilidad a la insulina
Rodríguez-Correa E, Gómez CB, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K
Idioma: Español
Referencias bibliográficas: 75
Paginas: 61-75
Archivo PDF: 653.66 Kb.
RESUMEN
En México existe una alta prevalencia de síndrome metabólico entre la población
adulta, el mismo porcentaje se asocia a la población sedentaria del país. Una de las
alteraciones que acompaña al síndrome metabólico es la resistencia a la insulina,
la cual afecta en gran medida al tejido muscular. Ya que el músculo esquelético y
cardíaco abarcan el 40.5% del peso corporal y representan un papel importante en
el metabolismo energético corporal, son de mayor interés en esta situación. En esta
revisión se exploran las alteraciones en el funcionamiento, metabolismo y función
endocrina de este tejido derivadas del desarrollo del síndrome metabólico. Se señalan
también las aportaciones del ejercicio para el mantenimiento de un estado saludable
y el efecto que tiene sobre el tejido muscular esquelético y cardíaco en el control del
síndrome metabólico. Por lo tanto, el objetivo de la revisión es presentar información
que describa las alteraciones metabólicas y funcionales que sufren los tejidos musculares
durante el síndrome metabólico, el papel que tienen como reguladores de
la sensibilidad a la insulina, así como las modificaciones consecuentes al ejercicio.
REFERENCIAS (EN ESTE ARTÍCULO)
Sacklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018 02 26;20(2):12.
Gutiérrez-Solis AL, Datta Banik S, Méndez- González RM. Prevalence of Metabolic Syndrome in Mexico: A Systematic Review and Meta-Analysis. Metab Syndr Relat Disord 2018;16(8):395-405.
Brenes-Monge A, Saavedra-Avendaño B, Alcalde-Rabanal J, Darney BG. Are overweight and obesity associated with increased risk of cesarean delivery in Mexico? A cross-sectional study from the National Survey of Health and Nutrition. BMC Pregnancy Childbirth 2019;19(1):239.
McClave SA, Snider HL. Dissecting the energy needs of the body. Curr Opin Clin Nutr Metab Care 2001;4(2):143-7
Nuutila P, Maki M, Laine H, Knuuti MJ, Ruotsalainen U, Luotolahti M, Haaparanta M, Solin O, Jula A, Koivisto VA. Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest 1995; 96(2): 1003-1009.
Heymsfield SB, Thomas DM, Bosy-Westphal A, Müller MJ. The anatomy of resting energy expenditure: body composition mechanisms. Eur J Clin Nutr 2019;73(2):166-171.
Brodsky SV, Gruszecki AC, Fallon K, Pasquale- Styles MA, Shaddy S, Yildiz V, Long SK, MacDonell M, Brideau RL, Keane J, Allenby P, Ivanov I, Moore S, Smith SM, Sachak T, Ball M, Yao K, James I, Muni N, Barth RF. Morphometric data on severely and morbidly obese deceased, established on forensic and non-forensic autopsies. Virchows Arch 2016;469(4):451-8.
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011;91(4):1447-531.
Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, Graw SL, Feiger J, Zhu XZ, Dao D, Ferguson DA, Bristow MR, Mestroni L. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2005;112(1):54-9.
Sherwood L. Human Physiology: From Cells to Systems. 2nd. ed. West Publishing Company, Canadá, 1993.
Malmqvist UP, Aronshtam A, Lowey S. Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry 2004;43(47):15058-65.
Baker JS, McCormick MC, Robergs RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutr Metab 2010;2010:905612.
Kirkeby S. A monoclonal anticarbohydrate antibody detecting superfast myosin in the masseter muscle. Cell Tissue Res 1996;283(1):85-92
Ramamurthy B, Höök P, Larsson L. An overview of carbohydrate-protein interactions with specific reference to myosin and ageing. Acta Physiol Scand 1999;167(4):327-9.
Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 1993;264(5 Pt 1):C1085-95
Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol 2007;92(5):783-97.
Tallis J, Hill C, James RS, Cox VM, Seebacher F. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J Appl Physiol 2017;122(1):170-181.
Marín-García J, Goldenthal JM. La mitocondria y el corazón. Rev Esp Cardiol 2002;55(12):1293- 310.
Barrett KE, Susan M. Barman SM, Scott B, Brooks HL, Origen del latido cardiaco y actividad eléctrica del corazón. En Barrett KE, Susan M. Barman SM, Scott B, Brooks HL .Autores. Ganong. Fisiología médica. 24th. ed. McGraw-Hill, México, 2013 p 521-538.
Gardiener HM.Physiology of the Developing Heart.En: Anderson RH, Bakel EJ, Penny DJ, Redington AN, Rigby ML y Wernorsky G. Editors. Paediatric Cardiology. 3rdEditión. Churchill Livingstone.Elsevier.2009.pag. 73- 90.
Ramírez CD, Padrón R. Cardiomiopatía Hipertrófica familiar: Genes, mutaciones y modelos animales. Invest Clín 2004 ;45( 1 ): 69-100.
Marian AJ, Roberts R.Molecular Pathophysiology of Cardiomyopathies.En:Sperelakis N, Terzic A, Kurachi Y, Cohen MV.Editors. Heart Physiology and Pathophysiology. USA. Elsivier.2001.pag. 1045-1063.
Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013;113(5):603-16.
Gandoy-Fieiras N, Gonzalez-Juanatey JR, Eiras S. Myocardium Metabolism in Physiological and Pathophysiological States: Implications of Epicardial Adipose Tissue and Potential Therapeutic Targets. Int J Mol Sci 2020;21(7):2641.
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018;98(4):2133-2223
Abdulla H, Smith K, Atherton PJ, Idris I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia 2016;59(1):44-55.
Carvajal K, Moreno-Sánchez R. Heart metabolic disturbances in cardiovascular diseases. Arch Med Res 2003;34(2):89-99.
Iliadis F, Kadoglou N, Didangelos T. Insulin and the heart. Diabetes Res Clin Pract 2011;93(1):S86-91.
Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2008;294(3):R673-80
Martins AR, Nachbar RT, Gorjao R, Vinolo MA, Festuccia WT, Lambertucci RH, Cury- Boaventura MF, Silveira LR, Curi R, Hirabara SM. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis 2012;23;11:30.
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481(7382):463- 878.
Tencio JAA, Alpízar RD, Camacho SV, Muñoz JPM, Morales GS. Miokines: mediators of the effects of physycal exercise in health. Rev Med UCRR 2016;10:32-43.
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017;127(1):43-54.
Ahn N, Kim K. Effects of Aerobic and Resistance Exercise on Myokines in High Fat Diet-Induced Middle-Aged Obese Rats. Int J Environ Res Public Health 2020;17(8):2685.
Yang H, Chang J, Chen W, Zhao L, Qu B, Tang C, Qi Y, Zhang J. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats. Endocrine 2013;43(3):579-85.
Castro-Sepúlveda M., Monsalves-Alvarez M. Irisina, Obesidad y Ejercicio: Una Breve Revisión. Rev Horiz 2013;4(2):43-47.
Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crujeiras A, Seoane LM, Casanueva FF, Pardo M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013;8(4):e60563.
Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013;98(4):E769-78.
Handschin C, Spiegelman BM. The role of exercise and PGC 1 alpha in inflammation and chronic disease Nature 2008;454(7203):463- 9.
Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides 2014;56:94-110.
Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, Tavintharan S, Sum CF, Lim SC. Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications 2013;27(4):365-9
Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, Kim JG, Lee IK, Park KG. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 2013;100(1):96-101.
Trujillo LMG, Daniela García LD, Von GAO. Irisin updates: the new myokine. Rev Chil Nutr 2016;43(3):308-314.
Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, Qi L, Zhang M, Wang X, Cui T, Yang LJ, Tang D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 2014;63(2):514-25.
Lidell ME, Enerbäck S. Brown adipose tissue- -a new role in humans? Nat Rev Endocrinol 2010;6(6):319-25.
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293:444 -52.
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012;8(8):457-65.
Bonora E. The metabolic syndrome and cardiovascular disease. Ann Med 2006;38(1):64-80.
Perrone-Filardi P, Paolillo S, Costanzo P, Savarese G, Trimarco B, Bonow RO. The role of metabolic syndrome in heart failure. Eur Heart J 2015;36(39):2630-4.
Rana JS, Nieuwdorp M, Jukema JW, Kastelein JJ. Cardiovascular metabolic syndrome - an interplay of, obesity, inflammation, diabetes and coronary heart disease. Diabetes Obes Metab 2007;9(3):218-32.
Heck PM, Dutka DP. Insulin resistance and heart failure. Curr Heart Fail Rep 2009;6(2):89-94.
Du Toit E, Donner D. Myocardial Insulin Resistance: An Overview of Its Causes, Effects, and Potential Therapy. En: Arora S. Editora. Insulin Resistance. InTech. Rijeka, Croatia 2012 p189-225.
Palee S, Minta W, Mantor D, Sutham W, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Chattipakorn SC, Chattipakorn N. Combination of exercise and calorie restriction exerts greater efficacy on cardioprotection than monotherapy in obese-insulin resistant rats through the improvement of cardiac calcium regulation. Metabolism 2019;94:77-87.
Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 1998;180(1-2):53-7.
Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 2011;110(1):264-74
Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med 2018;5:135.
Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997;46(6):983-8
Berggren JR, Boyle KE, Chapman WH, Houmard JA. Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab 2008;294(4):E726- 32.
Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, Kakigi R, Okada T, Sakurai T, Kawamori R, Watada H. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5(7):e13250.
Hyatt JP, Nguyen L, Hall AE, Huber AM, Kocan JC, Mattison JA, de Cabo R, LaRocque JR, Talmadge RJ. Muscle-Specific Myosin Heavy Chain Shifts in Response to a Long-Term High Fat/High Sugar Diet and Resveratrol Treatment in Nonhuman Primates. Front Physiol 2016;7:77.
Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and Cardiac Remodeling in Adults: Mechanisms and Clinical Implications. Prog Cardiovasc Dis. 2018;61(2):114–23
Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities. Transl Res 2014;164(4):323–35.
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction novel roles of immunometabolism in macrophage activation and inflammation. Circ Res 2020;789–806
Keshel TE, Coker RH. Exercise Training and Insulin Resistance: A Current Review. J Obes Weight Loss Ther 2015;5(5):S5-003.
Sjøberg KA, Frøsig C, Kjøbsted R, Sylow L, Kleinert M, Betik AC, Shaw CS, Kiens B, Wojtaszewski JFP, Rattigan S, Richter EA, McConell GK. Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes 2017;66(6):1501-1510.
Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim JS. The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res 2012;26(6):1724-9.
Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Dériaz O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 2003;52(12):2874-81.
Merry TL, McConell GK. Do reactive oxygen species regulate skeletal muscle glucose uptake during contraction? Exerc Sport Sci Rev 2012;40(2):102-5.
Pereira RM, Moura LP, Muñoz VR, Da Silva AS, Gaspar RS, Ropelle ER, Pauli JR. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. Motriz 2017;23:e101609.
Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol 2017;234(3):R159-R181.
Gibb AA, Epstein PN, Uchida S, Zheng Y, McNally LA, Obal D, Katragadda K, Trainor P, Conklin DJ, Brittian KR, Tseng MT, Wang J, Jones SP, Bhatnagar A, Hill BG. Exercise- Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation 2017 ;136(22):2144-2157.
Peterson JM, Bryner RW, Sindler A, Frisbee JC, Alway SE. Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise. J Appl Physiol 2008;105(6):1934–43.
Yan Z, Kronemberger A, Blomme J, Call JA, Caster HM, Pereira RO, Zhao H, de Melo VU, Laker RC, Zhang M, Lira VA. Exercise leads to unfavourable cardiac remodelling and enhanced metabolic homeostasis in obese mice with cardiac and skeletal muscle autophagy deficiency. Sci Rep 2017;7(1):7894.
Kim K, Ahn N, Jung S, Park S. Effects of intermittent ladder-climbing exercise training on itochondrial biogenesis and endoplasmic reticulum stress of the cardiac muscle in obese middle-aged rats. Korean J Physiol Pharmacol 2017;21(6):633–41.
Medeiros C, Frederico MJ, Da Luz G, Pauli JR, Silva ASR, Pinho RA, et al. Exercise training reduces insulin resistance and upregulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats. J Cell Physiol 2011;226(3):666–74.