2020, Número 3
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (3)
Síndromes mielodisplásicos, más allá de los hipometilantes
Fernández DND, Trujillo PHJ
Idioma: Español
Referencias bibliográficas: 35
Paginas:
Archivo PDF: 368.64 Kb.
RESUMEN
Introducción:
El comportamiento heterogéneo de los síndromes mielodisplásicos, así como los progresos en los últimos años en el campo de la genética y la biología molecular, han provocado la aparición de múltiples investigaciones con diferentes enfoques terapéuticos. Los agentes hipometilantes son hasta el momento el tratamiento estándar para esta entidad, pero desafortunadamente no son efectivos en el 100 % de los casos y la duración de su respuesta es variable.
Objetivo:
Analizar las opciones terapéuticas actuales para el tratamiento de los síndromes mielodisplásicos.
Métodos:
Se realizó una revisión de la literatura, en inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico de artículos publicados en los últimos 5 años. Se hizo un análisis y resumen de la bibliografía revisada.
Análisis y síntesis de la información:
Actualmente existen múltiples opciones de tratamiento, la mayor parte dirigidos contra los eventos epigenéticos fundamentales: la hipermetilación, la modificación de las histonas diacetilasa y la activación de la respuesta inmune citotóxica contra clones anormales. Sin embargo, como no se ha establecido una única alteración, los tratamientos en la mayoría de los protocolos se adaptan al riesgo, incluyen un número reducido de casos y los resultados son limitados.
Conclusiones:
Se considera que una posible solución es dirigir el tratamiento a la alteración específica con base en las alteraciones moleculares y la medicina de precisión, fundamentalmente en los pacientes refractarios o en recaída postratamiento con los actuales agentes hipometilantes.
REFERENCIAS (EN ESTE ARTÍCULO)
Timothy A, Razavi GE. Targeted Therapy in Myelodysplastic Syndrome. EC Cancer. 2016;2.1:34-44.
Grinblatt DL, Sekeres MA, Komrokji R, Swern A, Sullivan KA, Narang M. Patients with myelodysplastic syndrome treated with azacitidine in clinical practice the AVIDA registry. Leuk Lymphoma. 2015;56(4):887-95.
Bernal T, Martínez-Camblor P, Sánchez-García J, Sanz G. Effectiveness of azacitidine for the treatment of higher-risk myelodysplastic syndromes in daily practice: the authors' reply. Leukemia. Mar 2016 ;30(3):740-1. doi: 10.1038/leu.2015.339.
Fraison JB, Mekinian A, Grignano E, Kahn JE, Arlet JB, Decaux O, et al. Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res. 2016 Feb 20;43:13-7.
Aleshin A and Greenberg PL. Molecular pathophysiology of the myelodiysplastic syndromes: insights for targeted therapy. Blood Advances. 2018;20(2):2787-97.
Steensma DP. Myelodysplastic syndromes current treatment algorithm. Blood Cancer J. 2018;8:47. Doi: 10.1038/s41408-018-0085-4 2018
Alfonso-Arbelbibe G, Basqueira J, Cismondi AL, de Dios Soler V, Enrico M, González A, et al. Síndromes mielodisplásicos y síndromes de superposición mielodisplasia/neoplasia mieloproliferativa. Guías de Diagnóstico y Tratamiento. Sociedad Argentina de Hematología. 2017;611-37.
Craddock C, Quek L, Goardon N, Freeman S, Siddique S, Raghavan M, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 2013;(27):1028-36.
Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains invhanged in chronic myelomonocitic leukaemia responding to hypomethylating agents. Nat Commun 2016; 7: 10767. doi:10.1038/ncomms10767.
Nazha A, Komrokji RS, Garcia-Manero G, Barnard J, Roboz GJ, Steensma DP, et al. The efficacy of current prognostic models in predicting outcome of patients with myelodysplastic syndromes at the time of hypomethylating agent failure. Haematologica 2016;101(6):e224-e227.;doi:10.3324/haematol.2015.140962
Gerstung M, Pellagatti A, Malcovati L, Giagounidis A, Porta MG, Jädersten M, et al. Combining gene mutation with gene expression dat improves outcome prediction in myelodysplastic syndromes. Nat Commun. 2015 Jan 9;6:5901. doi: 10.1038/ncomms6901
Harada H, Harada Y. Recent advances in myelodysplastic syndromes: molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 2015;106(4):329-36. doi: 10.1111/cas.12614
Fernández-Delgado N. Síndromes mielodisplásicos: una mirada al último decenio. Rev Cub Hematol Inmunol Hemoter. 2016 [citado 02/09/2019 ];32(4). Disponible en: Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/484
García-Manero G, Jabbour E, Borthakur G, Faderl S, Estrov Z, Yang H, et al. Randomized open-label phase II study of decitabine in patients with low or intermediate risk myelodysplastic syndromes. J Clin Oncol. 2013;31(20):2548-53. doi: 10.1200/JCO.2012.44.6823.
Santini V. How I treat MDS after hypomethylating agent failure. Blood. 2019;133(6):521-9. Doi:10.1182/blood-2018-03-785915
Platzbecker U, Germing U, G?tze K, Kiewe P, Mayer K , Chromic J, et al. Luspatercept for the treatment of anaemia in patients with lower -risk myelodysplastic syndromes (PACE-MDS): a multicenter, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;16:1338-47.
Komrokji R, Garcia-Manero G, Ades L, Prebet T, Steensma DP, Jurcic JG, et al. Sotatercept with long-term extension efor the treatment of anaemia in patients with lower -risk myelodysplastic syndromes: a phase 2, dose- ranging trial. Lancet Haematol 2018; 5: e63-e72.
Adès L, Sebert M, Fenaux P. Guadecitabine in myelodysplastic syndromes: promising but there is still progress to be made. Lancet Haematol Jun 2019;6(6):e290-e1. doi:10.1016/S2352-3026(19)30079-1
García- Manero G, Griffiths EA, Roboz GJ, Busque L, Wells R, Odenike O, et al. Phase 2 dose -confirmation study of oral ASTX727, a combination of oral decitabine with a cytidinedeaminasa inhibitor (CDAi) (E7727), in subjects with myelodysplastic syndromes. Blood 2017 [acceso 10/11/2019];130(Suppl 1):4274. Disponible en: Disponible en: https://doi.org/10.1182/blood.V130.Suppl_1.4274.4274
Clark O, Yen K, Mellinghoff IK. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 2016;22(8):1831-42.
Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Swords RT, Roboz GJ, et al. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2(IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128:343.
Di Nardo CD, Watts JM, Stein EM, de Botton S, Fathi AT, Prince GT, et al. Ivosidenib (AG-120) induced durable remissions and transfusion independence in patients with IDH- 1 mutant relapse or refractory myelodysplastic syndromes: results from a phase 1 dose escalation and expansión study. Blood. 2018 [acceso 10/11/2019];132(Suppl.1):1812. Disponible en: Disponible en: https://doi.org/10.1182/blood-2018-99-111264
García-Manero G, Fenaux P, Al-Kali A, Baer MR, Sekeres MA, Roboz GJ, et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME) a randomised, controlled , phase 3 trial. Lancet Oncol. 2016;17:496-508. doi: 10.1016/S1470-2045(16)00009-7
U.S. National Library of Medicine. Clinical Trials.gov. Efficacy and Safety of Oral Rigosertib in Transfusion-dependent, Low or Int-1 or Trisomy 8 Int-2 Myelodysplastic Syndrome(ONTARGET). [acceso 10/11/2019]. Disponible en: Disponible en: https://clinicaltrials.gov/ct2/show/NCT01584531
U.S. National Library of Medicine. Clinical Trials.gov. Oral Rigosertib in Low Risk MDS Patients Refractory to ESAs. [acceso 10/11/2019]. Disponible en: Disponible en: https://clinicaltrials.gov/ct2/show/NCT01904682
U.S. National Library of Medicine. Clinical Trials.gov. Phase II Part 2 Expansion of Oral Rigosertib in Combination With Azacitidine. [acceso 10/11/2019]. Disponible en: Disponible en: https://clinicaltrials.gov/ct2/show/NCT01926587
Jilg S, Reidel V, Muller-Thomas C, Koning J, Schauwecker J, Hockendorf U, et al. Blockade of BCL-2 poteins efficiently induces apotosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia. 2016;30(1):112-23. doi: 10.1038/leu.2015.179
Di Nardo CD, Rausch CR, Benton C Kadia T, Jain N, Pemmaraju N, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93:401-7.
Welch JS, Klco JM, Gao F, Procknow E, Uy GL, Stockerl-Goldstein KE, et al. A Phase 2 study of combination therapy with arsenic trioxide and gemtuzumab ozogamicin in patients with myelodysplastic syndromes or secondary acute myeloid leukemia. Cancer. 2011;117:1253-61.
Wei W, Zhou F, Zhang Y, Guo L, Shi H, Hou J. A combination of Thalidomide and arsenic trioxide is effective and well tolerated in patients with myelodysplastic syndromes. Leuk Res. 2012;36:7159.
Al-Anazi WK and AL-Anazi KA. Epigenetics in Myelodysplastic Syndromes. J Mol Genet Med. 2019;3(1):1-17.
Chokr N, Patel R, Wattamwar K, Chokr S. The rising era of immune Checkpoint inhibitors in myelodysplastic syndromes. Adv Hematol. 2018. 2018;:2458679. doi.org/10.1155/2018/2458679
Shahrabi S, Khosravi A, Shahjahani M, Rashim F, Saki N. Genetic an epigenetics of myelodysplastic syndromes and response to drug therapy: new insighs. Oncol Rev. 2016;10:311-8.
Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B -8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. May 2018;24(4):497-504. doi:10.1038/nm.4493.
Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351(cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia J Clin Oncol. 2018;36:2684-92. doi: 10.1200/JCO.2017.77.6112