2021, Número 4
<< Anterior Siguiente >>
Med Int Mex 2021; 37 (4)
Análisis en 14 horas del comportamiento cardiaco con base en una ley exponencial
Rodríguez-Velásquez J, Correa C, Prieto S, Laguado E, Pernett F, Villamizar M, Olivella E, Angarita F, De la Cruz G, Morales C
Idioma: Español
Referencias bibliográficas: 32
Paginas: 475-483
Archivo PDF: 257.69 Kb.
RESUMEN
Antecedentes: A partir de una ley matemática exponencial desarrollada previamente
en el contexto de los sistemas no lineales y la geometría fractal, se logró diferenciar
matemáticamente las dinámicas cardiacas normales de las anormales en 21 horas.
Objetivo: Confirmar la aplicabilidad clínica de esta metodología evaluando registros
Holter mediante una ley matemática exponencial en un lapso de 14 horas.
Materiales y Métodos: Estudio prospectivo en el que se seleccionaron registros
de dinámicas cardiacas normales y anormales, simulando el comportamiento de cada
dinámica en 21 y 14 horas, generando los atractores caóticos correspondientes. Se
calculó la dimensión fractal y los respectivos espacios de ocupación para dar lugar al
diagnóstico físico-matemático. Por último, se compararon estadísticamente los resultados
obtenidos mediante el método físico-matemático y el diagnóstico convencional.
Resultados: Se seleccionaron 120 registros de dinámicas cardiacas normales y
anormales; se logró diferenciar los estados de normalidad y anormalidad cardiaca
mediante la ocupación espacial de los atractores en 14 horas encontrando valores entre
216 y 381 en Kp y entre 22 y 193, respectivamente. El coeficiente kappa obtenido fue
de 1 y la sensibilidad y especificidad fueron del 100%.
Conclusiones: La metodología matemática exponencial aplicada a la dinámica
cardiaca en 14 horas permitió la realización de diferenciaciones matemáticas entre
estados de normalidad y anormalidad de los sistemas cardiacos.
REFERENCIAS (EN ESTE ARTÍCULO)
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading, Mass.: Addison Wesley; 1992: 1-48. h ttps://doi.org/10.1201/9780429503481.
Peitgen H, Jurgens H, Saupe D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag; 1992: 67- 76. doi. 10.1007/978-1-4757-4740-9.
Mandelbrot B. The fractal geometry of nature. Freeman. Barcelona: Tusquets Eds. S.A.; 2000.
Mandelbrot B. ¿Cuánto mide la costa de Gran Bretaña? En: Los Objetos Fractales. Barcelona: Tusquets Eds. S.A.; 2000: 27-50.
Peitgen H, Jurgens H, Saupe D. Limits and self similarity. En: Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag; 1992: 135-82. doi. 10.1007/978-1- 4757-4740-9.
Peitgen H, Jurgens H, Saupe D. Length, area and dimension. Measuring complexity and scaling properties. In: Chaos and Fractals: New Frontiers of Science. Springer-Verlag. New York; 1992: 183-228. doi. 10.1007/978-1-4757-4740-9.
Organización Mundial de la Salud. Enfermedades cardiovasculares. Datos y cifras. Centro de prensa. http://www. who.int/mediacentre/factsheets /fs317/es/index.html.
Organización Mundial de la Salud. Enfermedades cardiovasculares. ¿Cómo reducir la carga de las enfermedades cardiovasculares? Centro de Prensa. http://www.who.int/ mediacentre/factsheets/fs317/es/index.html.
Prieto S, Young P, Ceresetto JM, Bullorsky EO. Terapia anticoagulante en fibrilación auricular. Medicina 2011; 71 (3): 274-82.
Neumar RW, Otto CW, Link MS, Kronick SL, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (suppl 3): S729-S767. doi. 10.1161/CIRCULATIONAHA. 110.970988.
Liu SH, Cheng DC, Lin CM. Arrhythmia identification with two-lead electrocardiograms using artificial neural networks and support vector machines for a portable ECG monitor system. Sensors 2013; 13: 813-28. https://doi. org/10.3390/s130100813.
Goldberger A, Amaral L, Hausdorff JM, Ivanov P, et al. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 2002; 99: 2466-72. doi. 10.1073/pnas.012579499.
Zhilin Q. Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophys Mol Biol 2011; 105 (3): 247-257. doi. 10.1016/j.pbiomolbio.2010.11.001.
Rodríguez J, Álvarez L, Tapia D, López F, et al. Evaluación de la dinámica cardiaca de pacientes con arritmia con base en la teoría de la probabilidad. Rev Medicina 2012; 34 (1): 5-6.
Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci 2011; 2 (8): 1050-59.
Guías colombianas de electrofisiología no invasiva. Revista Colombiana de Cardiología 2014; 21 (1): 1-118.
Lu DY, Yang AC, Cheng HM, Lu TM, et al. Heart rate variability is associated with exercise capacity in patients with cardiac Syndrome X. PLoS One 2016; 11 (1): e0144935. doi. 10.1371/journal.pone.0144935.
Ogliari G, Mahinrad S, Stott DJ, Jukema JW, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ 2015; 187 (15): E442-9. doi. 10.1503/ cmaj.150462.
Correa C, Rodríguez J, Prieto S, Urina M, et al. Ley matemática exponencial aplicada a la evaluación de la dinámica cardiaca en 18 horas. Rev Cuba Investig Bioméd 2018; 36(4): 1-17.
Garfinkel A. A mathematics for physiology. Am J Physiol 1983; 245: R455-R466. doi. 10.1152/ajpregu.1983.245.4.R455.
Schumacher A. Linear and nonlinear approaches to the analysis of RR interval variability. Biol Res Nurs 2004; 5: 211-21. doi. 10.1177/1099800403260619.
Mäkikallio T. Analysis of heart rate dynamics by methods derived from nonlinear mathematics-clinical applicability and prognostic significance, ch. 2. PhD thesis, Oulu University Library, Oulu. 1998.
Scaffeta N, Moon R, West B. Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity 2007; 12 (5): 12-17. doi. 10.1002/cplx.20183.
Huikuri HV, Mäkikallio T, Peng CK, Goldberger AL, et al. Fractal correlation properties of R – R interval dynamics and mortality in patients with depressed left ventricular function after and acute myocardial infarction. Circulation 2000; 101: 47-53. doi. 10.1161/01.cir.101.1.47.
Voss A, Schulz S, Schroeder R, Baumert M, et al. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil Trans R Soc 2009; 367A, 277-296. doi. 10.1098/rsta.2008.0232.
Zhu B, Ding Y, Hao K. A novel automatic detection system for ECG arrhythmias using maximum margin clustering with immune evolutionary algorithm. Comput Math Methods Med 2013; (2013): 1-8. doi. 10.1155/2013/453402.
Wang JS, Chiang WC, Hsu YL, Yang YT. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 2013; 116: 38-45. https://doi.org/10.1016/j.neurocom. 2011.10.045.
Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas. Madrid: Sarpe; 1983: 23-32.
Rodríguez J, Prieto S, Mendoza F, Velásquez N. Evaluación físicomatemática de arritmias cardiacas con tratamiento terapéutico de metoprolol a partir de las proporciones de la entropía. Rev UDCA Act & Div Cient 2015; 18 (2): 301- 310. https://doi.org/10.31910/rudca.v18.n2.2015.153.
Rodríguez J, Prieto S, Correa C, Aguirre G, et al. Proporciones de la entropía aplicadas a la unidad de cuidados intensivos: predicciones en infarto agudo de miocardio. Rev Acad Colomb Cienc Ex Fis Nat 2016; 40 (155): 192-199. https://doi.org/10.18257/raccefyn.308.
Rodríguez J, Prieto S, Flórez M, Alarcón C, et al. Physicalmathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci 2014; 5 (5): 102-108. doi. http:/dx.doi.org/10.14303/ jmms.2014.070.
Rodríguez J. Dynamical systems applied to dynamic variables of patients from the Intensive Care Unit (ICU). Physical and mathematical mortality predictions on ICU. J Med Med Sci 2015; 6 (8): 102-108. doi. 10.14303/jmms.2015.115.