2021, Número 4
<< Anterior Siguiente >>
Acta Pediatr Mex 2021; 42 (4)
Síndromes de falla medular hereditarios: etiología, fisiopatología, diagnóstico y tratamiento
Fiesco-Roa M, Monsivais-Orozco A, Rodríguez A, Frias S, García-de Teresa B
Idioma: Español
Referencias bibliográficas: 69
Paginas: 192-207
Archivo PDF: 449.99 Kb.
RESUMEN
Los síndromes de falla medular hereditarios son un grupo heterogéneo de enfermedades
genéticas debidas a variantes patogénicas en genes relacionados con la hematopoyesis.
Los estudios de análisis genómico han permitido delimitar, al menos, 13 síndromes de
falla medular hereditarios debidamente caracterizados. El fenotipo de estas entidades
es un espectro que va desde críptico, hasta padecimientos con un cuadro clínico muy
evidente. Además, pueden cursar con manifestaciones extramedulares, como cáncer o
alteraciones funcionales y del desarrollo. Este tipo de padecimientos requiere un alto
índice de sospecha, que debe plantearse ante cualquier paciente con alteraciones en
la hematopoyesis, incluso si no hay manifestaciones extramedulares o éstas no son
evidentes. Los síndromes de falla medular hereditarios son enfermedades complejas
cuyo proceso diagnóstico y tratamiento requiere de un equipo interdisciplinario de
especialistas, como los que se encuentran en centros de atención de tercer nivel. En
esta revisión se exponen las características etiológicas, fisiopatológicas, clínicas y
paraclínicas de los principales síndromes de falla medular hereditarios.
REFERENCIAS (EN ESTE ARTÍCULO)
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol 2017; 177 (4): 526-42.
Shimamura A. Clinical approach to marrow failure. Hematology Am Soc Hematol Educ Program 2009; 329-37.
Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol 2019; 56 (1): 69-82. https: //doi.org/10.1053/j. seminhematol.2018.05.016
Sieff CA. Introduction to Acquired and Inherited Bone Marrow Failure. Hematol Oncol Clin North Am 2018; 32 (4): 569-80. https: //linkinghub.elsevier.com/retrieve/pii/ S0889858818307160
Alter BP, Rosenberg PS, Day T, Menzel S, Giri N, Savage SA, et al. Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. Br J Haematol 2013; 162 (4): 542-6.
Bogliolo M, Bluteau D, Lespinasse J, Pujol R, Vasquez N, D’Enghien CD, et al. Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia. Genet Med 2018; 20 (4): 458-63.
Khincha PP, Savage SA. Neonatal manifestations of inherited bone marrow failure syndromes. Semin Fetal Neonatal Med 2016; 21 (1): 57-65. http: //dx.doi.org/10.1016/j. siny.2015.12.003
Bluteau O, Sebert M, Leblanc T, De Latour RP, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2018; 131 (7): 717-32.
Hashmi S, Allen C, Klaassen R, Fernandez C, Yanofsky R, Shereck E, et al. Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet 2017; 79 (5): 448-58. http: //doi.wiley.com/10.1111/j.1399- 0004.2010.01468.x
Risitano AM, Marotta S, Calzone R, Grimaldi F, Zatterale A. Twenty years of the Italian Fanconi Anemia Registry: Where we stand and what remains to be learned. Haematologica 2016; 101 (3): 319-27.
Geddis AE. Congenital Amegakaryocytic Thrombocytopenia and Thrombocytopenia with Absent Radii. Hematol Oncol Clin North Am 2009; 23 (2): 321-31. https: //linkinghub. elsevier.com/retrieve/pii/S0889858809000136
Vulliamy T, Dokal I. Dyskeratosis Congenita. Semin Hematol 2006; 43 (3): 157-66. https: //linkinghub.elsevier.com/ retrieve/pii/S0037196306000758
Ikuse T, Kudo T, Arai K, Fujii Y, Ida S, Ishii T, et al. Shwachman- Diamond syndrome: Nationwide survey and systematic review in Japan. Pediatr Int 2018; 60 (8): 719-26. http: // doi.wiley.com/10.1111/ped.13601
King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 2005; 131 (5): 636-44. http: //doi.wiley.com/10.1111/j.1365- 2141.2005.05819.x
Savoia A, Dufour C, Locatelli F, Noris P, Ambaglio C, Rosti V, et al. Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations. Haematologica 2007; 92 (9): 1186-93. http: //www. haematologica.org/cgi/doi/10.3324/haematol.11425
Gong R-L, Wu J, Chen T-X. Clinical, Laboratory, and Molecular Characteristics and Remission Status in Children With Severe Congenital and Non-congenital Neutropenia. Front Pediatr 2018; 6. https: //www.frontiersin.org/article/ 10.3389/fped.2018.00305/full
DBA Foundation. Learn more. Diagnosis. https: //dbafoundation. org/learn-more/diagnosis/
National Organization for Rare Disorders. Thrombocytopenia Absent Radius Syndrome. https: //rarediseases.org/rare- diseases/thrombocytopenia-absent-radius-syndrome/
Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 2017; 54 (2): 105-14. http: //dx.doi.org/10.1053/j.seminhematol. 2017.04.004
Geddis AE. Congenital amegakaryocytic thrombocytopenia. Pediatr Blood Cancer 2011; 57 (2): 199-203.
Martínez-Frías ML, Bermejo Sánchez E, García García A, Pérez Fernández JL, Cucalón Manzanos F, Calvo Aguilar MJ, et al. An epidemiological study of the thrombocytopenia with radial aplasia syndrome (TAR) in Spain. An Esp Pediatr 1998; 49 (6): 619-23. http: //www.ncbi.nlm.nih. gov/pubmed/9972626
Vlachos A, Muir E. How I treat Diamond-Blackfan anemia. Blood 2010; 116 (19): 3715-23.
Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: Dyskeratosis congenita -update 2015. Eur J Hum Genet 2015; 23 (4): 558. http: //www.nature.com/ articles/ejhg2014170
Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev 2010; 24 (3): 101-22. http: //dx.doi.org/10.1016/j. blre.2010.03.002
Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000; 110 (4): 768-79.
Spoor J, Farajifard H, Rezaei N. Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133: 149-62. https: //doi.org/10.1016/j. critrevonc.2018.10.003
Calado RT, Regal JA, Kleiner DE, Schrump DS, Peterson NR, Pons V, et al. A Spectrum of Severe Familial Liver Disorders Associate with Telomerase Mutations. Klein R, editor. PLoS One 2009; 4 (11): e7926. https: //dx.plos.org/10.1371/ journal.pone.0007926
Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the national cancer institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 2018; 103 (1): 30-9.
Skórka A, Bielicka-Cymermann J, Gieruszczak-Białek D, Korniszewski L. Thrombocytopenia-absent radius (tar) syndrome: a case with agenesis of corpus callosum, hypoplasia of cerebellar vermis and horseshoe kidney. Genet Couns 2005; 16 (4): 377-82. http: //www.ncbi.nlm.nih. gov/pubmed/16440880
Greenhalgh KL, Howell RT, Bottani A, Ancliff PJ, Brunner HG, Verschuuren-Bemelmans CC, et al. Thrombocytopeniaabsent radius syndrome: A clinical genetic study. J Med Genet 2002; 39 (12): 876-81.
Kerr EN, Ellis L, Dupuis A, Rommens JM, Durie PR. The Behavioral Phenotype of School-Age Children with Shwachman Diamond Syndrome Indicates Neurocognitive Dysfunction with Loss of Shwachman-Bodian-Diamond Syndrome Gene Function. J Pediatr 2010; 156 (3): 433- 438.e1. https: //linkinghub.elsevier.com/retrieve/pii/ S0022347609009019
Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan anemia registry. Blood 2012; 119 (16): 3815-9.
Manukjan G, Bösing H, Schmugge M, Strauß G, Schulze H. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syndrome. Br J Haematol 2017; 179 (4): 606-17. http: //doi.wiley. com/10.1111/bjh.14913
Engidaye G, Melku M, Enawgaw B. Diamond blackfan anemia: Genetics, pathogenesis, diagnosis and treatment. Electron J Int Fed Clin Chem Lab Med 2019; 30 (1): 67-81.
West AH, Churpek JE. Old and new tools in the clinical diagnosis of inherited bone marrow failure syndromes. Hematology 2017; 2017 (1): 79-87. https: //ashpublications. org/hematology/article/2017/1/79/21056/Old-andnew- tools-in-the-clinical-diagnosis-of
Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev 2019; 37.
Kutler DI, Singh B, Satagopan J, Batish D, Berwick M, Giampietro PF, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003; 101: 1249-56.
Rodríguez A, D’Andrea A. Fanconi anemia pathway. Curr Biol 2017; 27 (18): R986-8. https: //linkinghub.elsevier. com/retrieve/pii/S0960982217309478
Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 2012; 13 (10): 693-704. http: //www.nature. com/articles/nrg3246
Wallace DJ. Telomere diseases. N Engl J Med 2010; 362 (12): 1150.
Alter BP, Giri N, Savage SA, Rosenberg PS. Telomere length in inherited bone marrow failure syndromes. Haematologica 2015; 100 (1): 49-54.
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12 (12): 1037-52. https: //www.tandfonline.com/doi/full/10.1080 /17474086.2019.1662720
Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am 2018; 32 (4): 687-700. https: // linkinghub.elsevier.com/retrieve/pii/S0889858818307147
Myers KC, Bolyard AA, Otto B, Wong TE, Jones AT, Harris RE, et al. Variable Clinical Presentation of Shwachman- Diamond Syndrome: Update from the North American Shwachman-Diamond Syndrome Registry. J Pediatr 2014; 164 (4): 866-70. https: //linkinghub.elsevier.com/retrieve/ pii/S0022347613014741
In K, Zaini MA, Müller C, Warren AJ, von Lindern M, Calkhoven CF. Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/ EBPα and C/EBPβ mRNAs. Nucleic Acids Res 2016; 44 (9): 4134-46. https: //academic.oup.com/nar/article-lookup/ doi/10.1093/nar/gkw005
Nihrane A, Sezgin G, Dsilva S, Dellorusso P, Yamamoto K, Ellis S, et al. Depletion of the Shwachman-Diamond syndrome gene product, SBDS, leads to growth inhibition and increased expression of OPG and VEGF-A. Blood Cells Mol Dis 2009; 42 (1): 85–91. https: //linkinghub.elsevier. com/retrieve/pii/S1079979608002039
Austin KM, Gupta ML, Coats SA, Tulpule A, Mostoslavsky G, Balazs AB, et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest 2008; 118 (4): 1511-8. http: //www.jci.org/ articles/view/33764
Orelio C, Verkuijlen P, Geissler J, van den Berg TK, Kuijpers TW. SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors. Ben-Jacob E, editor. PLoS One 2009; 4 (9): e7084. https: //dx.plos.org/10.1371/ journal.pone.0007084
Vella A, D’aversa E, Api M, Breveglieri G, Allegri M, Giacomazzi A, et al. MTOR and STAT3 pathway hyper-activation 207 Fiesco-Roa M, et al. Síndromes de falla medular hereditarios is associated with elevated interleukin-6 levels in patients with shwachman-diamond syndrome: Further evidence of lymphoid lineage impairment. Cancers (Basel) 2020; 12 (3).
Geddis AE. Inherited Thrombocytopenia: Congenital Amegakaryocytic Thrombocytopenia and Thrombocytopenia With Absent Radii. Semin Hematol 2006; 43 (3): 196-203.
Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, et al. C-Mpl Mutations Are the Cause of Congenital Amegakaryocytic Thrombocytopenia. Blood 2001; 97 (1): 139-46.
Mukai HY, Kojima H, Todokoro K, Tahara T, Kato T, Hasegawa Y, et al. Serum thrombopoietin (TPO) levels in patients with amegakaryocytic thrombocytopenia are much higher than those with immune thrombocytopenic purpura. Thromb Haemost 1996; 76 (5): 675-8. http: //www.ncbi.nlm.nih. gov/pubmed/8950771
Welte K, Zeidler C, Dale DC. Severe Congenital Neutropenia. Semin Hematol 2006; 43 (3): 189-95.
Yakisan E, Schirg E, Zeidler C, Bishop NJ, Reiter A, Hirt A, et al. High incidence of significant bone loss in patients with severe congenital neutropenia (Kostmann’s syndrome). J Pediatr 1997; 131 (4): 592-7. https: //linkinghub.elsevier. com/retrieve/pii/S0022347697700684
Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol 2017; 179 (4): 557-74.
Ballmaier M, Schulze H, Strauss G, Cherkaoui K, Wittner N, Lynen S, et al. Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood 1997; 90 (2): 612-9. http: //www. ncbi.nlm.nih.gov/pubmed/9226161
Ballmaier M, Germeshausen M. Advances in the understanding of congenital amegakaryocytic thrombocytopenia. Br J Haematol 2009; 146 (1): 3-16.
Albers CA, Newbury-Ecob R, Ouwehand WH, Ghevaert C. New insights into the genetic basis of TAR (thrombocytopenia- absent radii) syndrome. Curr Opin Genet Dev 2013; 23 (3): 316-23. http: //dx.doi.org/10.1016/j.gde.2013.02.015
Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, et al. Compound inheritance of a lowfrequency regulatory SNP and a rare null mutation in exonjunction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (4): 435-9.
Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A, et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 2009; 41 (11): 1182-90.
Calado RT, Clé D V. Treatment of inherited bone marrow failure syndromes beyond transplantation. Hematology. 2017; 2017 (1): 96-101.
Dale DC. Hematopoietic growth factors for the treatment of severe chronic neutropenia. Stem Cells 1995; 13 (2): 94-100. http: //doi.wiley.com/10.1002/stem.5530130201
Scagni P, Saracco P, Timeus F, Farinasso L, Dall’Aglio M, Bosa EM, et al. Use of recombinant granulocyte colonystimulating factor in Fanconi’s anemia. Haematologica 1998; 83 (5): 432-7. http: //www.ncbi.nlm.nih.gov/ pubmed/9658728
64. Alter BP. Inherited bone marrow failure syndromes: Considerations pre- and posttransplant. Hematology 2017; 2017 (1): 88-95.
McReynolds LJ, Yang Y, Yuen Wong H, Tang J, Zhang Y, Mulé MP, et al. MDS-associated mutations in germline GATA2 mutated patients with hematologic manifestations. Leuk Res 2019; 76: 70-5. https: //doi.org/10.1016/j. leukres.2018.11.013
Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, et al. Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L. Am J Hum Genet 2016; 98 (6): 1146-58. http: //dx.doi.org/10.1016/j.ajhg.2016.04.009
Veitia RA. MIRAGE Syndrome: Phenotypic Rescue by Somatic Mutation and Selection. Trends Mol Med 2019; 25 (11): 937-40. https: //doi.org/10.1016/j.molmed.2019.08.008
Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000; 26 (4): 397-8. http: //www.nature.com/articles/ng1200_397
Niihori T, Ouchi-Uchiyama M, Sasahara Y, Kaneko T, Hashii Y, Irie M, et al. Mutations in MECOM, Encoding Oncoprotein EVI1, Cause Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia. Am J Hum Genet 2015; 97 (6): 848-54. https: //linkinghub.elsevier.com/retrieve/pii/S0002929715004127